skip to main content


Title: Void detection and fiber extraction for statistical characterization of fiber-reinforced polymers
Fast track article for IS&T International Symposium on Electronic Imaging 2020: Computational Imaging proceedings.  more » « less
Award ID(s):
1662554
NSF-PAR ID:
10179419
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Electronic Imaging
ISSN:
2470-1173
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There is great interest in advancing methodologies for the isolation and characterization of exosomes (30–150 nm, extracellular vesicles (EVs)) for fundamental biochemical research and liquid biopsy applications. This is due to the accessibility of exosomal surface biomarkers, providing relevant biochemical information from their cells of origin. Exosome-based techniques hold potential for diagnostic applications through less invasive sampling ( versus the physical extraction methods of pathology). This study demonstrates a simple spin-down tip methodology for generic exosome capture, followed by immunoaffinity-based fluorescent labeling to classify EVs captured on a polyester capillary-channeled polymer (C-CP) fiber stationary phase. An antibody to the generic EV tetraspanin protein (CD81) is employed to confirm the presence of biologically active EVs on the fiber surface. An antibody to the CA125 protein, upregulated in the case of ovarian cell stress, is included as a cancer marker protein. Scanning electron microscopy and confocal fluorescence microscopy were performed directly on the capture fibers to visualize the morphology and assess the bioactivity/identity of captured vesicles. This report provides a proof-of-concept for an efficient means of isolating, purifying, immunolabeling, and fluorescent imaging for the biomarker assessment of extracellular vesicles on a single platform . Herein lies the novelty of the overall approach. The ability to affect the entire isolation, immunolabeling, and imaging process in <5 hours is demonstrated. The C-CP fiber spin-down tip is an efficient exosome isolation methodology for microliter samples from diverse media (human urine and cell culture media here) towards diverse means of characterization and identification. 
    more » « less
  2. Abstract Background

    Optical coherence tomography (OCT) has the potential to provide real‐time imaging guidance for atrial fibrillation ablation, with promising results for lesion monitoring. OCT can also offer high‐resolution imaging of tissue composition, but there is insufficient cardiac OCT data to inform the use of OCT to reveal important tissue architecture of the human left atrium. Thus, the objective of this study was to define OCT imaging data throughout the human left atrium, focusing on the distribution of adipose tissue and fiber orientation as seen from the endocardium.

    Methods and Results

    Human hearts (n = 7) were acquired for imaging the left atrium with OCT. A spectral‐domain OCT system with 1325 nm center wavelength, 6.5 μm axial resolution, 15 μm lateral resolution, and a maximum imaging depth of 2.51 mm in the air was used. Large‐scale OCT image maps of human left atrial tissue were developed, with adipose thickness and fiber orientation extracted from the imaging data. OCT imaging showed scattered distributions of adipose tissue around the septal and pulmonary vein regions, up to a depth of about 0.43 mm from the endocardial surface. The total volume of adipose tissue detected by OCT over one left atrium ranged from 1.42 to 28.74 mm3. Limited fiber orientation information primarily around the pulmonary veins and the septum could be identified.

    Conclusion

    OCT imaging could provide adjunctive information on the distribution of subendocardial adipose tissue, particularly around thin areas around the pulmonary veins and septal regions. Variations in OCT‐detected tissue composition could potentially assist ablation guidance.

     
    more » « less
  3. Abstract

    We present results for a new type of fiber-coupled stimulated emission depletion (STED) microscope which uses a single fiber to transport STED and excitation light, as well as collect the fluorescence signal. Our method utilizes two higher-order eigenmodes of polarization maintaining (PM) fiber to generate the doughnut-shaped STED beam. The modes are excited with separate beams that share no temporal coherence, yielding output that is independent of fiber bending. We measured the resolution using 45 nm fluorescent beads and found a median bead image size of 116 nm. This resolution does not change as function of fiber bending radius, demonstrating robust operation. We report, for the first time, STED images of fixed biological samples collected in the epi-direction through fiber. Our microscope design shows promise for future use in super-resolution micro-endoscopes andin vivoneural imaging in awake and freely-behaving animals.

     
    more » « less
  4. Spatial frequency modulation imaging (SPIFI) provides a simple architecture for modulating an extended illumination source that is compatible with single pixel imaging. We demonstrate wavelength domain SPIFI (WD-SPIFI) by encoding time-varying spatial frequencies in the spectral domain that can produce enhanced resolution images, like its spatial domain counterpart, spatial domain (SD) SPIFI. However, contrary to SD-SPIFI, WD-SPIFI enables remote delivery by single mode fiber, which can be attractive for applications where free-space imaging is not practical. Finally, we demonstrate a cascaded system incorporating WD-SPIFI in-line with SD-SPIFI enabling single pixel 2D imaging without any beam or sample scanning.

     
    more » « less
  5. Vitreous collagen structure plays an important role in ocular mechanics. However, capturing this structure with existing vitreous imaging methods is hindered by the loss of sample position and orientation, low resolution, or a small field of view. The objective of this study was to evaluate confocal reflectance microscopy as a solution to these limitations. Intrinsic reflectance avoids staining, and optical sectioning eliminates the requirement for thin sectioning, minimizing processing for optimal preservation of the natural structure. We developed a sample preparation and imaging strategy usingex vivogrossly sectioned porcine eyes. Imaging revealed a network of uniform diameter crossing fibers (1.1 ± 0.3 µm for a typical image) with generally poor alignment (alignment coefficient = 0.40 ± 0.21 for a typical image). To test the utility of our approach for detecting differences in fiber spatial distribution, we imaged eyes every 1 mm along an anterior-posterior axis originating at the limbus and quantified the number of fibers in each image. Fiber density was higher anteriorly near the vitreous base, regardless of the imaging plane. These data demonstrate that confocal reflectance microscopy addresses the previously unmet need for a robust, micron-scale technique to map features of collagen networksin situacross the vitreous.

     
    more » « less