skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: A generalized mechanism beyond NLP for real-time detection of cyber abuse through facial expression analytics
Abuse in cyber space is a problem requiring immediate attention. Unfortunately, despite advances in Natural Language Processing techniques, there are clear limitations in detecting instances of cyber abuse today. Challenges arising due to different languages that teens communicate with today, and usage of codes along with code mixing and code switching make the design of a comprehensive approach very hard. Existing NLP based approaches for detecting cyber abuse thus suffer from a high degree of false negatives and positives. In this paper, we investigate a new approach to detect instances of cyber abuse. Our approach is motivated by the premise that abusers tend to have unique facial expressions while engaging in an actual abuse episode, and if we are successful, such an approach will be language-agnostic. Here, using only four carefully identified facial features without any language processing, and realistic experiments with 15 users, our system proposed in this paper achieves 98% accuracy for same-user evaluation and up to 74% accuracy for cross-user evaluation in detecting instances of cyber abuse.  more » « less
Award ID(s):
1718071
PAR ID:
10179458
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
MobiQuitous '19: Proceedings of the 16th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services
Page Range / eLocation ID:
348 to 357
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Published research highlights the presence of demographic bias in automated facial attribute classification algorithms, particularly impacting women and individuals with darker skin tones. Existing bias mitigation techniques typically require demographic annotations and often obtain a trade-off between fairness and accuracy, i.e., Pareto inefficiency. Facial attributes, whether common ones like gender or others such as "chubby" or "high cheekbones", exhibit high interclass similarity and intraclass variation across demographics leading to unequal accuracy. This requires the use of local and subtle cues using fine-grained analysis for differentiation. This paper proposes a novel approach to fair facial attribute classification by framing it as a fine-grained classification problem. Our approach effectively integrates both low-level local features (like edges and color) and high-level semantic features (like shapes and structures) through cross-layer mutual attention learning. Here, shallow to deep CNN layers function as experts, offering category predictions and attention regions. An exhaustive evaluation on facial attribute annotated datasets demonstrates that our FineFACE model improves accuracy by $1.32\%$ to $1.74\%$ and fairness by $67\%$ to $83.6\%$, over the SOTA bias mitigation techniques. Importantly, our approach obtains a Pareto-efficient balance between accuracy and fairness between demographic groups. In addition, our approach does not require demographic annotations and is applicable to diverse downstream classification tasks. To facilitate reproducibility, the code and dataset information is available at~\url{https://github.com/VCBSL-Fairness/FineFACE}. 
    more » « less
  2. Unmanned Aerial Vehicles have been widely used in military and civilian areas. The positioning and return-to-home tasks of UAVs deliberately depend on Global Positioning Systems (GPS). However, the civilian GPS signals are not encrypted, which can motivate numerous cyber-attacks on UAVs, including Global Positioning System spoofing attacks. In these spoofing attacks, a malicious user transmits counterfeit GPS signals. Numerous studies have proposed techniques to detect these attacks. However, these techniques have some limitations, including low probability of detection, high probability of misdetection, and high probability of false alarm. In this paper, we investigate and compare the performances of three ensemble-based machine learning techniques, namely bagging, stacking, and boosting, in detecting GPS attacks. The evaluation metrics are the accuracy, probability of detection, probability of misdetection, probability of false alarm, memory size, processing time, and prediction time per sample. The results show that the stacking model has the best performance compared to the two other ensemble models in terms of all the considered evaluation metrics. 
    more » « less
  3. Facial attribute prediction is a facial analysis task that describes images using natural language features. While many works have attempted to optimize prediction accuracy on CelebA, the largest and most widely used facial attribute dataset, few works have analyzed the accuracy of the dataset's attribute labels. In this paper, we seek to do just that. Despite the popularity of CelebA, we find through quantitative analysis that there are widespread inconsistencies and inaccuracies in its attribute labeling. We estimate that at least one third of all images have one or more incorrect labels, and reliable predictions are impossible for several attributes due to inconsistent labeling. Our results demonstrate that classifiers struggle with many CelebA attributes not because they are difficult to predict, but because they are poorly labeled. This indicates that the CelebA dataset is flawed as a facial analysis tool and may not be suitable as a generic evaluation benchmark for imbalanced classification. 
    more » « less
  4. Unmanned aerial vehicles are prone to several cyber-attacks, including Global Positioning System spoofing. Several techniques have been proposed for detecting such attacks. However, the recurrence and frequent Global Positioning System spoofing incidents show a need for effective security solutions to protect unmanned aerial vehicles. In this paper, we propose two dynamic selection techniques, Metric Optimized Dynamic selector and Weighted Metric Optimized Dynamic selector, which identify the most effective classifier for the detection of such attacks. We develop a one-stage ensemble feature selection method to identify and discard the correlated and low importance features from the dataset. We implement the proposed techniques using ten machine-learning models and compare their performance in terms of four evaluation metrics: accuracy, probability of detection, probability of false alarm, probability of misdetection, and processing time. The proposed techniques dynamically choose the classifier with the best results for detecting attacks. The results indicate that the proposed dynamic techniques outperform the existing ensemble models with an accuracy of 99.6%, a probability of detection of 98.9%, a probability of false alarm of 1.56%, a probability of misdetection of 1.09%, and a processing time of 1.24 s. 
    more » « less
  5. null (Ed.)
    Detecting security vulnerabilities in software before they are exploited has been a challenging problem for decades. Traditional code analysis methods have been proposed, but are often ineffective and inefficient. In this work, we model software vulnerability detection as a natural language processing (NLP) problem with source code treated as texts, and address the auto-mated software venerability detection with recent advanced deep learning NLP models assisted by transfer learning on written English. For training and testing, we have preprocessed the NIST NVD/SARD databases and built a dataset of over 100,000 files in C programming language with 123 types of vulnerabilities. The extensive experiments generate the best performance of over 93% accuracy in detecting security vulnerabilities. 
    more » « less