skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: FineFACE: Fair Facial Attribute Classification Leveraging Fine-grained Features
Published research highlights the presence of demographic bias in automated facial attribute classification algorithms, particularly impacting women and individuals with darker skin tones. Existing bias mitigation techniques typically require demographic annotations and often obtain a trade-off between fairness and accuracy, i.e., Pareto inefficiency. Facial attributes, whether common ones like gender or others such as "chubby" or "high cheekbones", exhibit high interclass similarity and intraclass variation across demographics leading to unequal accuracy. This requires the use of local and subtle cues using fine-grained analysis for differentiation. This paper proposes a novel approach to fair facial attribute classification by framing it as a fine-grained classification problem. Our approach effectively integrates both low-level local features (like edges and color) and high-level semantic features (like shapes and structures) through cross-layer mutual attention learning. Here, shallow to deep CNN layers function as experts, offering category predictions and attention regions. An exhaustive evaluation on facial attribute annotated datasets demonstrates that our FineFACE model improves accuracy by $$1.32\%$$ to $$1.74\%$$ and fairness by $$67\%$$ to $$83.6\%$$, over the SOTA bias mitigation techniques. Importantly, our approach obtains a Pareto-efficient balance between accuracy and fairness between demographic groups. In addition, our approach does not require demographic annotations and is applicable to diverse downstream classification tasks. To facilitate reproducibility, the code and dataset information is available at~\url{https://github.com/VCBSL-Fairness/FineFACE}.  more » « less
Award ID(s):
2345561
PAR ID:
10538662
Author(s) / Creator(s):
;
Publisher / Repository:
International Conference on Pattern Recognition
Date Published:
Subject(s) / Keyword(s):
Fairness in AI Fine-grained Features
Format(s):
Medium: X
Location:
Kolkata, India
Sponsoring Org:
National Science Foundation
More Like this
  1. NA (Ed.)
    Facial attribute classification algorithms frequently manifest demographic biases by obtaining differential performance across gender and racial groups. Existing bias mitigation techniques are mostly in-processing techniques, i.e., implemented during the classifier’s training stage, that often lack generalizability, require demographically annotated training sets, and exhibit a trade-off between fairness and classification accuracy. In this paper, we propose a technique to mitigate bias at the test time i.e., during the deployment stage, by harnessing prediction uncertainty and human–machine partnership. To this front, we propose to utilize those lowest percentages of test data samples identified as outliers with high prediction uncertainty. These identified uncertain samples at test-time are labeled by human analysts for decision rendering and for subsequently retraining the deep neural network in a continual learning framework. With minimal human involvement and through iterative refinement of the network with human guidance at test-time, we seek to enhance the accuracy as well as the fairness of the already deployed facial attribute classification algorithms. Extensive experiments are conducted on gender and smile attribute classification tasks using four publicly available datasets and with gender and race as the protected attributes. The obtained outcomes consistently demonstrate improved accuracy by up to 2% and 5% for the gender and smile attribute classification tasks, respectively, using our proposed approaches. Further, the demographic bias was significantly reduced, outperforming the State-of-the-Art (SOTA) bias mitigation and baseline techniques by up to 55% for both classification tasks. 
    more » « less
  2. Published research highlights the presence of demographic bias in automated facial attribute classification. The proposed bias mitigation techniques are mostly based on supervised learning, which requires a large amount of labeled training data for generalizability and scalability. However, labeled data is limited, requires laborious annotation, poses privacy risks, and can perpetuate human bias. In contrast, self-supervised learning (SSL) capitalizes on freely available unlabeled data, rendering trained models more scalable and generalizable. However, these label-free SSL models may also introduce biases by sampling false negative pairs, especially at low-data regimes (< 200K images) under low compute settings. Further, SSL-based models may suffer from performance degradation due to a lack of quality assurance of the unlabeled data sourced from the web. This paper proposes a fully self-supervised pipeline for demographically fair facial attribute classifiers. Leveraging completely unlabeled data pseudolabeled via pre-trained encoders, diverse data curation techniques, and meta-learning-based weighted contrastive learning, our method significantly outperforms existing SSL approaches proposed for downstream image classification tasks. Extensive evaluations on the FairFace and CelebA datasets demonstrate the efficacy of our pipeline in obtaining fair performance over existing baselines. Thus, setting a new benchmark for SSL in the fairness of facial attribute classification. 
    more » « less
  3. There has been significant progress in improving the performance of graph neural networks (GNNs) through enhancements in graph data, model architecture design, and training strategies. For fairness in graphs, recent studies achieve fair representations and predictions through either graph data pre-processing (e.g., node feature masking, and topology rewiring) or fair training strategies (e.g., regularization, adversarial debiasing, and fair contrastive learning). How to achieve fairness in graphs from the model architecture perspective is less explored. More importantly, GNNs exhibit worse fairness performance compared to multilayer perception since their model architecture (i.e., neighbor aggregation) amplifies biases. To this end, we aim to achieve fairness via a new GNN architecture. We propose Fair Message Passing (FMP) designed within a unified optimization framework for GNNs. Notably, FMP explicitly renders sensitive attribute usage in forward propagation for node classification task using cross-entropy loss without data pre-processing. In FMP, the aggregation is first adopted to utilize neighbors' information and then the bias mitigation step explicitly pushes demographic group node presentation centers together.In this way, FMP scheme can aggregate useful information from neighbors and mitigate bias to achieve better fairness and prediction tradeoff performance. Experiments on node classification tasks demonstrate that the proposed FMP outperforms several baselines in terms of fairness and accuracy on three real-world datasets. The code is available at https://github.com/zhimengj0326/FMP. 
    more » « less
  4. Recent studies indicate that deep neural networks (DNNs) are prone to show discrimination towards certain demographic groups. We observe that algorithmic discrimination can be explained by the high reliance of the models on fairness sensitive features. Motivated by this observation, we propose to achieve fairness by suppressing the DNN models from capturing the spurious correlation between those fairness sensitive features with the underlying task. Specifically, we firstly train a bias-only teacher model which is explicitly encouraged to maximally employ fairness sensitive features for prediction. The teacher model then counter-teaches a debiased student model so that the interpretation of the student model is orthogonal to the interpretation of the teacher model. The key idea is that since the teacher model relies explicitly on fairness sensitive features for prediction, the orthogonal interpretation loss enforces the student network to reduce its reliance on sensitive features and instead capture more task relevant features for prediction. Experimental analysis indicates that our framework substantially reduces the model's attention on fairness sensitive features. Experimental results on four datasets further validate that our framework has consistently improved the fairness with respect to three group fairness metrics, with a comparable or even better accuracy. 
    more » « less
  5. Machine learning models with explainable predictions are increasingly sought after, especially for real-world, mission-critical applications that require bias detection and risk mitigation. Inherent interpretability, where a model is designed from the ground-up for interpretability, provides intuitive insights and transparent explanations on model prediction and performance. In this paper, we present COLABEL, an approach to build interpretable models with explanations rooted in the ground truth. We demonstrate COLABEL in a vehicle feature extraction application in the context of vehicle make-model recognition (VMMR). By construction, COLABEL performs VMMR with a composite of interpretable features such as vehicle color, type, and make, all based on interpretable annotations of the ground truth labels. First, COLABEL performs corroborative integration to join multiple datasets that each have a subset of desired annotations of color, type, and make. Then, COLABEL uses decomposable branches to extract complementary features corresponding to desired annotations. Finally, COLABEL fuses them together for final predictions. During feature fusion, COLABEL harmonizes complementary branches so that VMMR features are compatible with each other and can be projected to the same semantic space for classification. With inherent interpretability, COLABEL achieves superior performance to the state-of-the-art black-box models, with accuracy of 0.98, 0.95, and 0.94 on CompCars, Cars196, and BoxCars116K, respectively. COLABEL provides intuitive explanations due to constructive interpretability, and subsequently achieves high accuracy and usability in mission-critical situations. 
    more » « less