skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fat, oil, and grease (FOG) deposits yield higher methane than FOG in anaerobic co-digestion with waste activated sludge
Award ID(s):
1805666
PAR ID:
10179484
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Environmental Management
Volume:
268
Issue:
C
ISSN:
0301-4797
Page Range / eLocation ID:
110708
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Manufacturer Usage Description (MUD) is a proposed IETF standard enabling local area networks (LAN) to automatically configure their access control when adding a new IoT device based on the recommendations provided for that device by the manufacturer. MUD has been proposed as an isolation-based defensive mechanism with a focus on devices in the home, where there is no dedicated network administrator. In this paper, we describe the efficacy of MUD for a generic IoT device under different threat scenarios in the context of the Fog. We propose a method to use rate limiting to prevent end devices from participating in denial of service attacks (DDoS), including against the Fog itself. We illustrate our assumptions by providing a possible real world example and describe the benefits for MUD in the Fog for various stakeholders. 
    more » « less
  2. The intermittency of fog occurrence (the switching between fog and no-fog) is a key stochastic feature that plays a role in its duration and the amount of moisture available. Here, fog intermittency is studied by using the visibility time series collected during the month of July 2022 on Sable Island, Canada. In addition to the visibility, time series of air relative humidity and turbulent kinetic energy, putative variables akin to the formation and breakup conditions of fog, respectively, are also analyzed in the same framework to establish links between fog intermittency and the underlying atmospheric variables. Intermittency in the time series is quantified with their binary telegraph approximations to isolate clustering behavior from amplitude variations. It is shown that relative humidity and turbulent kinetic energy bound many stochastic features of visibility, including its spectral exponent, clustering exponent, and the growth of its block entropy slope. Although not diagnostic, the visibility time series displays features consistent with Pomeau–Manneville Type-III intermittency in its quiescent phase duration PDF scaling (−3/2), power spectrum scaling (−1/2), and signal amplitude PDF scaling (−2). The binary fog time series exhibits properties of self-organized criticality in the relation between its power spectrum scaling and quiescent phase duration distribution. 
    more » « less