skip to main content

Title: Kruskal-based approximation algorithm for the multi-level Steiner tree problem
We study the multi-level Steiner tree problem: a generalization of the Steiner tree problem in graphs where terminals T require varying priority, level, or quality of service. In this problem, we seek to find a minimum cost tree containing edges of varying rates such that any two terminals u, v with priorities P(u), P(v) are connected using edges of rate min{P(u),P(v)} or better. The case where edge costs are proportional to their rate is approximable to within a constant factor of the optimal solution. For the more general case of non-proportional costs, this problem is hard to approximate with ratio c log log n, where n is the number of vertices in the graph. A simple greedy algorithm by Charikar et al., however, provides a min{2(ln |T | + 1), lρ}-approximation in this setting, where ρ is an approximation ratio for a heuristic solver for the Steiner tree problem and l is the number of priorities or levels (Byrka et al. give a Steiner tree algorithm with ρ ≈ 1.39, for example). In this paper, we describe a natural generalization to the multi-level case of the classical (single-level) Steiner tree approximation algorithm based on Kruskal’s minimum spanning tree algorithm. We prove more » that this algorithm achieves an approximation ratio at least as good as Charikar et al., and experimentally performs better with respect to the optimum solution. We develop an integer linear programming formulation to compute an exact solution for the multi-level Steiner tree problem with non-proportional edge costs and use it to evaluate the performance of our algorithm on both random graphs and multi-level instances derived from SteinLib. « less
Authors:
; ; ; ;
Award ID(s):
1712119 1740858
Publication Date:
NSF-PAR ID:
10179495
Journal Name:
28th Annual European Symposium on Algorithms (ESA)
Sponsoring Org:
National Science Foundation
More Like this
  1. In the classical Steiner tree problem, given an undirected, connected graph G =( V , E ) with non-negative edge costs and a set of terminals T ⊆ V , the objective is to find a minimum-cost tree E &prime ⊆ E that spans the terminals. The problem is APX-hard; the best-known approximation algorithm has a ratio of ρ = ln (4)+ε < 1.39. In this article, we study a natural generalization, the multi-level Steiner tree (MLST) problem: Given a nested sequence of terminals T ℓ ⊂ … ⊂ T 1 ⊆ V , compute nested trees E ℓ ⊆ … ⊆ E 1 ⊆ E that span the corresponding terminal sets with minimum total cost. The MLST problem and variants thereof have been studied under various names, including Multi-level Network Design, Quality-of-Service Multicast tree, Grade-of-Service Steiner tree, and Multi-tier tree. Several approximation results are known. We first present two simple O (ℓ)-approximation heuristics. Based on these, we introduce a rudimentary composite algorithm that generalizes the above heuristics, and determine its approximation ratio by solving a linear program. We then present a method that guarantees the same approximation ratio using at most 2ℓ Steiner tree computations. We compare these heuristicsmore »experimentally on various instances of up to 500 vertices using three different network generation models. We also present several integer linear programming formulations for the MLST problem and compare their running times on these instances. To our knowledge, the composite algorithm achieves the best approximation ratio for up to ℓ = 100 levels, which is sufficient for most applications, such as network visualization or designing multi-level infrastructure.« less
  2. In the classical Steiner tree problem, given an undirected, connected graph G=(V,E) with non-negative edge costs and a set of terminals T⊆V, the objective is to find a minimum-cost tree E′⊆E that spans the terminals. The problem is APX-hard; the best known approximation algorithm has a ratio of ρ=ln(4)+ε<1.39. In this paper, we study a natural generalization, the multi-level Steiner tree (MLST) problem: given a nested sequence of terminals Tℓ⊂⋯⊂T1⊆V, compute nested trees Eℓ⊆⋯⊆E1⊆E that span the corresponding terminal sets with minimum total cost. The MLST problem and variants thereof have been studied under various names including Multi-level Network Design, Quality-of-Service Multicast tree, Grade-of-Service Steiner tree, and Multi-Tier tree. Several approximation results are known. We first present two simple O(ℓ)-approximation heuristics. Based on these, we introduce a rudimentary composite algorithm that generalizes the above heuristics, and determine its approximation ratio by solving a linear program. We then present a method that guarantees the same approximation ratio using at most 2ℓ Steiner tree computations. We compare these heuristics experimentally on various instances of up to 500 vertices using three different network generation models. We also present various integer linear programming (ILP) formulations for the MLST problem, and compare their running timesmore »on these instances. To our knowledge, the composite algorithm achieves the best approximation ratio for up to ℓ=100 levels, which is sufficient for most applications such as network visualization or designing multi-level infrastructure.« less
  3. Given a graph G = (V, E) and a subset T ⊆ V of terminals, a Steiner tree of G is a tree that spans T. In the vertex-weighted Steiner tree (VST) problem, each vertex is assigned a non-negative weight, and the goal is to compute a minimum weight Steiner tree of G. Vertex-weighted problems have applications in network design and routing, where there are different costs for installing or maintaining facilities at different vertices. We study a natural generalization of the VST problem motivated by multi-level graph construction, the vertex-weighted grade-of-service Steiner tree problem (V-GSST), which can be stated as follows: given a graph G and terminals T, where each terminal v ∈ T requires a facility of a minimum grade of service R(v) ∈ {1, 2, . . . `}, compute a Steiner tree G0 by installing facilities on a subset of vertices, such that any two vertices requiring a certain grade of service are connected by a path in G 0 with the minimum grade of service or better. Facilities of higher grade are more costly than facilities of lower grade. Multi-level variants such as this one can be useful in network design problems where vertices maymore »require facilities of varying priority. While similar problems have been studied in the edge-weighted case, they have not been studied as well in the more general vertex-weighted case. We first describe a simple heuristic for the V-GSST problem whose approximation ratio depends on `, the number of grades of service. We then generalize the greedy algorithm of [Klein & Ravi, 1995] to show that the V-GSST problem admits a (2 ln |T|)-approximation, where T is the set of terminals requiring some facility. This result is surprising, as it shows that the (seemingly harder) multi-grade problem can be approximated as well as the VST problem, and that the approximation ratio does not depend on the number of grades of service. Finally, we show that this problem is a special case of the directed Steiner tree problem and provide an integer linear programming (ILP) formulation for the V-GSST problem.« less
  4. Directed Steiner Tree (DST) is a central problem in combinatorial optimization and theoretical computer science: Given a directed graph G = (V, E) with edge costs c ∈ ℝ_{≥ 0}^E, a root r ∈ V and k terminals K ⊆ V, we need to output a minimum-cost arborescence in G that contains an rrightarrow t path for every t ∈ K. Recently, Grandoni, Laekhanukit and Li, and independently Ghuge and Nagarajan, gave quasi-polynomial time O(log²k/log log k)-approximation algorithms for the problem, which are tight under popular complexity assumptions. In this paper, we consider the more general Degree-Bounded Directed Steiner Tree (DB-DST) problem, where we are additionally given a degree bound d_v on each vertex v ∈ V, and we require that every vertex v in the output tree has at most d_v children. We give a quasi-polynomial time (O(log n log k), O(log² n))-bicriteria approximation: The algorithm produces a solution with cost at most O(log nlog k) times the cost of the optimum solution that violates the degree constraints by at most a factor of O(log²n). This is the first non-trivial result for the problem. While our cost-guarantee is nearly optimal, the degree violation factor of O(log²n) is an O(logmore »n)-factor away from the approximation lower bound of Ω(log n) from the Set Cover hardness. The hardness result holds even on the special case of the Degree-Bounded Group Steiner Tree problem on trees (DB-GST-T). With the hope of closing the gap, we study the question of whether the degree violation factor can be made tight for this special case. We answer the question in the affirmative by giving an (O(log nlog k), O(log n))-bicriteria approximation algorithm for DB-GST-T.« less
  5. We present an algorithm that, with high probability, generates a random spanning tree from an edge-weighted undirected graph in \Otil(n^{5/3 }m^{1/3}) time\footnote{The \Otil(\cdot) notation hides \poly(\log n) factors}. The tree is sampled from a distribution where the probability of each tree is proportional to the product of its edge weights. This improves upon the previous best algorithm due to Colbourn et al. that runs in matrix multiplication time, O(n^\omega). For the special case of unweighted graphs, this improves upon the best previously known running time of \tilde{O}(\min\{n^{\omega},m\sqrt{n},m^{4/3}\}) for m >> n^{7/4} (Colbourn et al. '96, Kelner-Madry '09, Madry et al. '15). The effective resistance metric is essential to our algorithm, as in the work of Madry et al., but we eschew determinant-based and random walk-based techniques used by previous algorithms. Instead, our algorithm is based on Gaussian elimination, and the fact that effective resistance is preserved in the graph resulting from eliminating a subset of vertices (called a Schur complement). As part of our algorithm, we show how to compute \eps-approximate effective resistances for a set SS of vertex pairs via approximate Schur complements in \Otil(m+(n + |S|)\eps^{-2}) time, without using the Johnson-Lindenstrauss lemma which requires \Otil( \min\{(m + |S|)\eps^{-2},more »m+n\eps^{-4} +|S|\eps^{-2}\}) time. We combine this approximation procedure with an error correction procedure for handing edges where our estimate isn't sufficiently accurate.« less