skip to main content


Title: Orthogonal deposition of Au on different facets of Ag cuboctahedra for the fabrication of nanoboxes with complementary surfaces
We report the fabrication of Ag–Au cuboctahedral nanoboxes enclosed by {100} and {111} facets, respectively, through the orthogonal deposition of Au on two different facets of Ag cuboctahedra. Specifically, we titrate aqueous HAuCl 4 into an aqueous mixture containing Ag cuboctahedra, ascorbic acid, and NaOH (under basic conditions), in the presence of poly(vinylpyrrolidone) (PVP) and cetyltrimethylammonium chloride (CTAC), respectively. In the case of PVP, the oxidation of Ag was initiated from the {111} facets of the cuboctahedra through the galvanic replacement reaction between Au( iii ) and Ag, accompanied by the deposition of Au onto the {100} facets. Because the dissolved Ag( i ) ions could react with NaOH to form Ag 2 O on the {111} facets and thus terminate the galvanic reaction, the Au( iii ) ions would be further reduced by the ascorbate monoanion (HAsc − ) to generate Au atoms for their continuing deposition on the {100} facets, converting Ag cuboctahedra to Ag@Au {100} cuboctahedra. Upon the etching of Ag from the core, we obtained Ag–Au cuboctahedral nanoboxes enclosed by {100} facets. In contrast, when CTAC was present, the oxidation of Ag through a galvanic reaction could continuously proceed on {100} facets as the dissolved Ag( i ) ions would react with the excessive amount of Cl − ions derived from CTAC to produce soluble AgCl 2 − ions rather than insoluble Ag 2 O. As a result, the dissolved Ag( i ) and Au( iii ) ions would be co-reduced by HAsc − for the generation of Ag and Au atoms, followed by their co-deposition onto {111} facets for the generation of Ag@Au {111} concave cuboctahedra. After the removal of Ag from the core by etching, we obtained Ag–Au {111} cuboctahedral nanoboxes enclosed by {111} facets. Both samples of cuboctahedral nanoboxes exhibited strong optical absorption in the infrared region. Interestingly, the cuboctahedral nanoboxes enclosed by {111} facets showed significantly enhanced catalytic activity toward the reduction of 4-nitrophenol by NaBH 4 relative to their counterparts encased by {100} facets.  more » « less
Award ID(s):
1708300
NSF-PAR ID:
10179573
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Nanoscale
Volume:
12
Issue:
1
ISSN:
2040-3364
Page Range / eLocation ID:
372 to 379
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Noble‐metal nanoboxes offer an attractive form of nanomaterials for catalytic applications owing to their open structure and highly efficient use of atoms. Herein, we report the facile synthesis of Ag−Ru core−shell nanocubes and then Ru nanoboxes with a hexagonal close‐packed(hcp) structure, as well as evaluation of their catalytic activity toward a model hydrogenation reaction. By adding a solution of Ru(acac)3in ethylene glycol (EG) dropwise to a suspension of silver nanocubes in EG at 170 °C, Ru atoms are generated and deposited onto the entire surface of a nanocube. As the volume of the RuIIIprecursor is increased, Ru atoms are also produced through a galvanic replacement reaction, generating Ag−Ru nanocubes with a hollow interior. The released Ag+ions are then reduced by EG and deposited back onto the nanocubes. By selectively etching away the remaining Ag with aqueous HNO3, the as‐obtained Ag−Ru nanocubes are transformed into Ru nanoboxes, whose walls are characterized by anhcpstructure and an ultrathin thickness of a few nanometers. Finally, we evaluated the catalytic properties of the Ru nanoboxes with two different wall thicknesses by using a model hydrogenation reaction; both samples showed excellent performance.

     
    more » « less
  2. Abstract

    Facet‐selective etching and deposition, as determined by the landscape of surface energy, represent two powerful methods for the transformation of noble‐metal nanocrystals into nanostructures with complex shapes or morphologies. This review highlights the use of these two methods, including integration of them, for the fabrication of novel monometallic and bimetallic nanostructures with enhanced properties. We start with an introduction to the role of surface capping in controlling the facet‐selective etching or deposition on the surface of Ag nanocrystals, followed by a case study of how to maneuver etching and deposition at different facets of Pd nanocrystals for the fabrication of nanoframes. We then introduce the use of galvanic replacement to accomplish selective etching and deposition on two different facets in an orthogonal manner, transforming Pd nanocubes into Pd−Pt octapods. By complementing galvanic replacement with a chemical reduction reaction, it is also feasible to control the rates of these two reactions for the conversion of Ag nanocubes into Ag@Ag−Au concave nanocubes and Ag@Au core‐shell nanocubes. These transformation methods not only greatly increase the shape diversity of metal nanocrystals but also offer nanocrystals with enhanced plasmonic and/or catalytic properties.

     
    more » « less
  3. Abstract

    We report the synthesis of bifunctional Ag@SiO2/Au nanoparticles with an “islands in the sea” configuration by titrating HAuCl4solution into an aqueous suspension of Ag@SiO2core–shell nanocubes in the presence of NaOH, ascorbic acid, and poly(vinyl pyrrolidone) at pH 11.9. The NaOH plays an essential role in generating small pores in the SiO2shellin situ, followed by the epitaxial deposition of Au from the Ag surface through the pores, leading to the formation of Au islands (6–12 nm in size) immersed in a SiO2sea. By controlling the amount of HAuCl4titrated into the reaction system, the Au islands can be made to pass through and protrude from the SiO2shell, embracing catalytic activity toward the reduction of 4‐nitrophenol to 4‐aminophenol by NaBH4. While the Ag in the core provides a strong surface‐enhanced Raman scattering activity, the SiO2sea helps maintain the Au component as compact, isolated, and stabilized islands. The Ag@SiO2/Au nanoparticles can serve as a bifunctional probe to monitor the stepwise Au‐catalyzed reduction of 4‐nitrothiophenol to 4‐aminothiophenol by NaBH4and Ag‐catalyzed oxidation of 4‐aminothiophenol totrans‐4,4′‐dimercaptoazobenzene by the O2from air in the same reaction system.

     
    more » « less
  4. Abstract

    This article describes a systematic study of the oxidative etching and regrowth behaviors of Pd nanocrystals, including single‐crystal cubes bounded by {100} facets, single‐crystal octahedra and tetrahedra enclosed by {111} facets; and multiple‐twinned icosahedra covered by {111} facets and twin boundaries. During etching, Pd atoms are preferentially oxidized and removed from the corners regardless of the type of nanocrystal, and the resultant Pd2+ions are then reduced back to elemental Pd. For cubes and icosahedra, the newly formed Pd atoms are deposited on the {100} facets and twin boundaries, respectively, due to their relatively higher energies. For octahedra and tetrahedra, the Pd atoms self‐nucleate in the solution phase, followed by their growth into small particles. We can control the regrowth rate relative to etching rate by varying the concentration of HCl in the reaction solution. As the concentration of HCl is increased, 18‐nm Pd cubes are transformed into octahedra of 23, 18, and 13 nm, respectively, in edge length. Due to the absence of regrowth, however, Pd octahedra are transformed into truncated octahedra, cuboctahedra, and spheres with decreasing sizes whereas Pd tetrahedra evolve into truncated tetrahedra and spheres. In contrast, Pd icosahedra with twin boundaries on the surface are converted to asymmetric icosahedra, flower‐like icosahedra, and spheres. This work not only advances the understanding of etching and growth behaviors of metal nanocrystals with various shapes and twin structures but also offers an alternative method for controlling their shape and size.

     
    more » « less
  5. The model reactions CH3X + (NH—CH=O)M ➔ CH3—NH—NH═O or NH═CH—O—CH3 + MX (M = none, Li, Na, K, Ag, Cu; X = F, Cl, Br) are investigated to demonstrate the feasibility of Marcus theory and the hard and soft acids and bases (HSAB) principle in predicting the reactivity of ambident nucleophiles. The delocalization indices (DI) are defined in the framework of the quantum theory of atoms in molecules (QT‐AIM), and are used as the scale of softness in the HSAB principle. To react with the ambident nucleophile NH═CH—O, the carbocation H3C+from CH3X (F, Cl, Br) is actually a borderline acid according to the DI values of the forming C…N and C…O bonds in the transition states (between 0.25 and 0.49), while the counter ions are divided into three groups according to the DI values of weak interactions involving M (M…X, M…N, and M…O): group I (M = none, and Me4N) basically show zero DI values; group II species (M = Li, Na, and K) have noticeable DI values but the magnitudes are usually less than 0.15; and group III species (M = Ag and Cu(I)) have significant DI values (0.30–0.61). On a relative basis, H3C+is a soft acid with respect to group I and group II counter ions, and a hard acid with respect to group III counter ions. Therefore, N‐regioselectivity is found in the presence of group I and group II counter ions (M = Me4N, Li, Na, K), while O‐regioselectivity is observed in the presence of the group III counter ions (M = Ag, and Cu(I)). The hardness of atoms, groups, and molecules is also calculated with new functions that depend on ionization potential (I) and electron affinity (A) and use the atomic charges obtained from localization indices (LI), so that the regioselectivity is explained by the atomic hardness of reactive nitrogen atoms in the transition states according to the maximum hardness principle (MHP). The exact Marcus equation is derived from the simple harmonic potential energy parabola, so that the concepts of activation free energy, intrinsic activation barrier, and reaction energy are completely connected. The required intrinsic activation barriers can be either estimated fromab initiocalculations on reactant, transition state, and product of the model reactions, or calculated from identity reactions. The counter ions stabilize the reactant through bridging N‐ and O‐site of reactant of identity reactions, so that the intrinsic barriers for the salts are higher than those for free ambident anions, which is explained by the increased reorganization parameter Δr. The proper application of Marcus theory should quantitatively consider all three terms of Marcus equation, and reliably represent the results with potential energy parabolas for reactants and all products. For the model reactions, both Marcus theory and HSAB principle/MHP principle predict the N‐regioselectivity when M = none, Me4N, Li, Na, K, and the O‐regioselectivity when M = Ag and Cu(I). © 2019 Wiley Periodicals, Inc.

     
    more » « less