Abstract Facet‐selective etching and deposition, as determined by the landscape of surface energy, represent two powerful methods for the transformation of noble‐metal nanocrystals into nanostructures with complex shapes or morphologies. This review highlights the use of these two methods, including integration of them, for the fabrication of novel monometallic and bimetallic nanostructures with enhanced properties. We start with an introduction to the role of surface capping in controlling the facet‐selective etching or deposition on the surface of Ag nanocrystals, followed by a case study of how to maneuver etching and deposition at different facets of Pd nanocrystals for the fabrication of nanoframes. We then introduce the use of galvanic replacement to accomplish selective etching and deposition on two different facets in an orthogonal manner, transforming Pd nanocubes into Pd−Pt octapods. By complementing galvanic replacement with a chemical reduction reaction, it is also feasible to control the rates of these two reactions for the conversion of Ag nanocubes into Ag@Ag−Au concave nanocubes and Ag@Au core‐shell nanocubes. These transformation methods not only greatly increase the shape diversity of metal nanocrystals but also offer nanocrystals with enhanced plasmonic and/or catalytic properties. 
                        more » 
                        « less   
                    
                            
                            Orthogonal deposition of Au on different facets of Ag cuboctahedra for the fabrication of nanoboxes with complementary surfaces
                        
                    
    
            We report the fabrication of Ag–Au cuboctahedral nanoboxes enclosed by {100} and {111} facets, respectively, through the orthogonal deposition of Au on two different facets of Ag cuboctahedra. Specifically, we titrate aqueous HAuCl 4 into an aqueous mixture containing Ag cuboctahedra, ascorbic acid, and NaOH (under basic conditions), in the presence of poly(vinylpyrrolidone) (PVP) and cetyltrimethylammonium chloride (CTAC), respectively. In the case of PVP, the oxidation of Ag was initiated from the {111} facets of the cuboctahedra through the galvanic replacement reaction between Au( iii ) and Ag, accompanied by the deposition of Au onto the {100} facets. Because the dissolved Ag( i ) ions could react with NaOH to form Ag 2 O on the {111} facets and thus terminate the galvanic reaction, the Au( iii ) ions would be further reduced by the ascorbate monoanion (HAsc − ) to generate Au atoms for their continuing deposition on the {100} facets, converting Ag cuboctahedra to Ag@Au {100} cuboctahedra. Upon the etching of Ag from the core, we obtained Ag–Au cuboctahedral nanoboxes enclosed by {100} facets. In contrast, when CTAC was present, the oxidation of Ag through a galvanic reaction could continuously proceed on {100} facets as the dissolved Ag( i ) ions would react with the excessive amount of Cl − ions derived from CTAC to produce soluble AgCl 2 − ions rather than insoluble Ag 2 O. As a result, the dissolved Ag( i ) and Au( iii ) ions would be co-reduced by HAsc − for the generation of Ag and Au atoms, followed by their co-deposition onto {111} facets for the generation of Ag@Au {111} concave cuboctahedra. After the removal of Ag from the core by etching, we obtained Ag–Au {111} cuboctahedral nanoboxes enclosed by {111} facets. Both samples of cuboctahedral nanoboxes exhibited strong optical absorption in the infrared region. Interestingly, the cuboctahedral nanoboxes enclosed by {111} facets showed significantly enhanced catalytic activity toward the reduction of 4-nitrophenol by NaBH 4 relative to their counterparts encased by {100} facets. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1708300
- PAR ID:
- 10179573
- Date Published:
- Journal Name:
- Nanoscale
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2040-3364
- Page Range / eLocation ID:
- 372 to 379
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract This article describes a systematic study of the oxidative etching and regrowth behaviors of Pd nanocrystals, including single‐crystal cubes bounded by {100} facets, single‐crystal octahedra and tetrahedra enclosed by {111} facets; and multiple‐twinned icosahedra covered by {111} facets and twin boundaries. During etching, Pd atoms are preferentially oxidized and removed from the corners regardless of the type of nanocrystal, and the resultant Pd2+ions are then reduced back to elemental Pd. For cubes and icosahedra, the newly formed Pd atoms are deposited on the {100} facets and twin boundaries, respectively, due to their relatively higher energies. For octahedra and tetrahedra, the Pd atoms self‐nucleate in the solution phase, followed by their growth into small particles. We can control the regrowth rate relative to etching rate by varying the concentration of HCl in the reaction solution. As the concentration of HCl is increased, 18‐nm Pd cubes are transformed into octahedra of 23, 18, and 13 nm, respectively, in edge length. Due to the absence of regrowth, however, Pd octahedra are transformed into truncated octahedra, cuboctahedra, and spheres with decreasing sizes whereas Pd tetrahedra evolve into truncated tetrahedra and spheres. In contrast, Pd icosahedra with twin boundaries on the surface are converted to asymmetric icosahedra, flower‐like icosahedra, and spheres. This work not only advances the understanding of etching and growth behaviors of metal nanocrystals with various shapes and twin structures but also offers an alternative method for controlling their shape and size.more » « less
- 
            Abstract Noble‐metal nanoboxes offer an attractive form of nanomaterials for catalytic applications owing to their open structure and highly efficient use of atoms. Herein, we report the facile synthesis of Ag−Ru core−shell nanocubes and then Ru nanoboxes with a hexagonal close‐packed(hcp) structure, as well as evaluation of their catalytic activity toward a model hydrogenation reaction. By adding a solution of Ru(acac)3in ethylene glycol (EG) dropwise to a suspension of silver nanocubes in EG at 170 °C, Ru atoms are generated and deposited onto the entire surface of a nanocube. As the volume of the RuIIIprecursor is increased, Ru atoms are also produced through a galvanic replacement reaction, generating Ag−Ru nanocubes with a hollow interior. The released Ag+ions are then reduced by EG and deposited back onto the nanocubes. By selectively etching away the remaining Ag with aqueous HNO3, the as‐obtained Ag−Ru nanocubes are transformed into Ru nanoboxes, whose walls are characterized by anhcpstructure and an ultrathin thickness of a few nanometers. Finally, we evaluated the catalytic properties of the Ru nanoboxes with two different wall thicknesses by using a model hydrogenation reaction; both samples showed excellent performance.more » « less
- 
            We report a facile route to the synthesis of Ag@Au–Pt trimetallic nanocubes in which the Ag, Au, and Pt atoms are exposed at the corners, side faces, and edges, respectively. Our success relies on the use of Ag@Au nanocubes, with Ag 2 O patches at the corners and Au on the side faces and edges, as seeds for the site-selective deposition of Pt on the edges only in a reaction system containing ascorbic acid (H 2 Asc) and poly(vinylpyrrolidone). At an initial pH of 3.2, H 2 Asc can dissolve the Ag 2 O patches, exposing the Ag atoms at the corners of a nanocube. Upon the injection of the H 2 PtCl 6 precursor, the Pt atoms derived from the reduction by both H 2 Asc and Ag are preferentially deposited on the edges, leading to the formation of Ag@Au–Pt trimetallic nanocubes. We demonstrate the use of 2,6-dimethylphenyl isocyanide as a molecular probe to confirm and monitor the deposition of Pt atoms on the edges of nanocubes through surface-enhanced Raman scattering (SERS). We further explore the use of these bifunctional trimetallic nanoparticles with integrated plasmonic and catalytic properties for in situ SERS monitoring the reduction of 4-nitrothiophenol by NaBH 4 . Upon the removal of Ag via H 2 O 2 etching, the Ag@Au–Pt nanocubes evolve into trimetallic nanoboxes with a wall thickness of about 2 nm and well-defined openings at the corners. The trimetallic nanoboxes embrace plasmon resonance peaks in the near-infrared region with potential in biomedical applications.more » « less
- 
            Galvanic replacement (GR) of monometallic nanoparticles (NPs) provides a versatile route to interesting bimetallic nanostructures, with examples such as nanoboxes, nanocages, nanoshells, nanorings, and heterodimers reported. The replacement of bimetallic templates by a more noble metal can generate trimetallic nanostructures with different architectures, where the specific structure has been shown to depend on the relative reduction potentials of the participating metals and lattice mismatch between the depositing and template metal phases. Now, the role of reaction stoichiometry is shown to direct the overall architecture of multimetallic nanostructures produced by GR with bimetallic templates. Specifically, the number of initial metal islands deposited on a NP template depends on the reaction stoichiometry. This outcome was established by studying the GR process between intermetallic PdCu (i-PdCu) NPs and either AuCl 2 − (Au 1+ ) or AuCl 4 − (Au 3+ ), producing i-PdCu–Au heterostructures. Significantly, multiple Au domains form in the case of GR with AuCl 2 − while only single Au domains form in the case of AuCl 4 − . These different NP architectures and their connection to reaction stoichiometry are consistent with Stranski–Krastanov (SK) growth, providing general guidelines on how the conditions of GR processes can be used to achieve multimetallic nanostructures with different defined architectures.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    