skip to main content


Title: Evidence for oxygenation of Fe-Mg oxides at mid-mantle conditions and the rise of deep oxygen
Abstract As the reaction product of subducted water and the iron core, FeO2 with more oxygen than hematite (Fe2O3) has been recently recognized as an important component in the D” layer just above the Earth's core-mantle boundary. Here, we report a new oxygen-excess phase (Mg, Fe)2O3+δ (0 < δ < 1, denoted as “OE-phase”). It forms at pressures greater than 40gigapascals when (Mg, Fe)-bearing hydrous materials are heated over 1,500 kelvin. The OE-phase is fully recoverable to ambient conditions for ex-situ investigation using transmission electron microscopy, which indicates that the OE-phase contains ferric iron (Fe3+) as in Fe2O3 but holds excess oxygen through interactions between oxygen atoms. The new OE-phase provides strong evidence that H2O has extraordinary oxidation power at high pressure. Unlike the formation of pyrite-type FeO2Hx which usually requires saturated water, the OE-phase can be formed with under-saturated water at mid-mantle conditions, and is expected to be more ubiquitous at depths greater than 1,000 km in Earth's mantle. The emergence of oxygen-excess reservoirs out of primordial and subducted (Mg, Fe)-bearing hydrous materials may revise our view on the deep-mantle redox chemistry.  more » « less
Award ID(s):
1723185
NSF-PAR ID:
10179707
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
National Science Review
ISSN:
2095-5138
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Iron‐dominant metallic phases are likely the primary hosts for nitrogen in the reduced deep Earth, hence the storage of nitrogen in the lower mantle and the core is governed by the behavior of the Fe‐N‐C system at high temperatures and pressures. In this study, phase transitions and thermoelastic properties of iron carbonitrides were investigated at high pressure‐temperature conditions by diamond anvil cell experiments and first‐principles calculations. Experimental data revealed no phase transition inε‐type Fe4(N0.6C0.4) or Fe7(N0.75C0.25)3up to 60 GPa at room temperature. At high temperature, Fe7(N0.75C0.25)3transforms into the Fe3C‐type phase at ∼27 GPa, and then into the Fe7C3‐type phase at ∼45 GPa, which is also corroborated by our theoretical calculations. We found that the phase stability of iron carbonitrides mainly depends on the N/C ratio, and the elastic properties of iron carbonitrides are dominantly affected by the Fe/(N+C) ratio. Iron carbonitrides with diverse structures may be the main host for nitrogen in the deep mantle. Some iron carbonitride inclusions in lower mantle diamonds could be the residue of the primordial mantle or originate from subducted nitrogen‐bearing materials, rather than iron‐enriched phases of the outer core. In addition, our experiments confirmed the existence of Fe7C3‐type Fe7C3‐Fe7N3solid solutions above 40 GPa. Fe7C3‐type Fe7(C, N)3has comparable density and thermoelastic properties to its isostructural endmembers and may be a promising candidate constituent of the Earth's inner core.

     
    more » « less
  2. Abstract

    The transport of hydrogen into Earth's deep interior may have an impact on lower mantle dynamics as well as on the seismic signature of subducted material. Due to the stability of the hydrous phasesδ‐AlOOH (delta phase), MgSiO2(OH)2(phase H), andε‐FeOOH at high temperatures and pressures, their solid solutions may transport significant amounts of hydrogen as deep as the core‐mantle boundary. We have constrained the equation of state, including the effects of a spin crossover in the Fe3+atoms, of (Al, Fe)‐phase H: Al0.84Fe3+0.07Mg0.02Si0.06OOH, using powder X‐ray diffraction measurements to 125 GPa, supported by synchrotron Mössbauer spectroscopy measurements on (Al, Fe)‐phase H andδ‐(Al, Fe)OOH. The changes in spin state of Fe3+in (Al, Fe)‐phase H results in a significant decrease in bulk sound velocity and occurs over a different pressure range (48–62 GPa) compared withδ‐(Al, Fe)OOH (32–40 GPa). Changes in axial compressibilities indicate a decrease in the compressibility of hydrogen bonds in (Al, Fe)‐phase H near 30 GPa, which may be associated with hydrogen bond symmetrization. The formation of (Al, Fe)‐phase H in subducted oceanic crust may contribute to scattering of seismic waves in the mid‐lower mantle (∼1,100–1,550 km). Accumulation of 1–4 wt.% (Al, Fe)‐phase H could reproduce some of the seismic signatures of large, low seismic‐velocity provinces. Our results suggest that changes in the electronic structure of phases in the (δ‐AlOOH)‐(MgSiO2(OH)2)‐(ε‐FeOOH) solid solution are sensitive to composition and that the presence of these phases in subducted oceanic crust could be seismically detectable throughout the lower mantle.

     
    more » « less
  3. Abstract

    High pressure and temperature experiments were carried out on the oxide mixtures corresponding to the bridgmanite stoichiometry under the hydrous shallow lower mantle conditions (24–25 GPa and 1673–1873 K with 5–10 wt. % of water in the starting material). Oxide mixtures investigated correspond to MgSiO3, (Mg, Fe)SiO3, (Mg, Al, Si)O3, and (Mg, Fe, Al, Si)O3. Melting was observed in all runs. Partitioning of various elements, including Mg, Fe, Si, and H is investigated. Melting under hydrous lower mantle conditions leads to increased (Mg + Fe)O/SiO2in the melt compared to the residual solids. The residual solids often contain a large amount of stishovite, and the melt contains higher (Mg,Fe)O/SiO2ratio than the initial material. (Mg + Fe)O‐rich hydrous melt could explain the low‐velocity anomalies observed in the shallow lower mantle and a large amount of stishovite in the residual solid may be responsible for the scattering of seismic waves in the mid‐lower mantle and may explain the “stishovite paradox. Since stishovite‐rich materials are formed only when silica‐rich source rock (MORB) is melted (not a typical peridotitic rock [bulk silicate Earth]), seismic scattering in the lower mantle provides a clue on the circulation of subducted MORB materials. To estimate hydrogen content, we use a new method of estimating the water content of unquenchable melts, and also propose a new interpretation of the significance of superhydrous phase B inclusions in bridgmanite. The results provide revised values of water partitioning between solid minerals and hydrous melts that are substantially higher than previous estimates.

     
    more » « less
  4. null (Ed.)
    Volatiles including carbon and hydrogen are generally considered to be more soluble in silicate melts than in mantle rocks. How these melts contribute to the storage and distribution of key volatiles in Earth's interior today and during its early evolution, however, remains largely unknown. It is essential to improve our knowledge about volatiles-bearing silicate magmas over the entire mantle pressure regime. Here we investigate molten Mg FexSiO3 ( , 0.25) containing both carbon and hydrogen using first-principles molecular dynamics simulations. Our results show that the dissolution mechanism of the binary volatiles in melts varies considerably under different conditions of pressure and redox. When incorporated as CO2 and H2O components (corresponding to oxidizing conditions) almost all carbon and hydrogen form bonds with oxygen. Their speciation at low pressure consists of predominantly isolated molecular CO2, carbonates, and hydroxyls. More oxygenated species, including tetrahedrally coordinated carbons, hydrogen (O-H-O) bridges, various oxygen-joined complexes appear as melt is further compressed. When two volatiles are incorporated as hydrocarbons CH4 and C2H6 (corresponding to reducing conditions), hydroxyls are prevalent with notable presence of molecular hydrogen. Carbon-oxygen bonding is almost completely suppressed. Instead carbon is directly correlated with itself, hydrogen, and silicon. Both volatiles also show strong affinity to iron. Reduced volatile speciation thus involves polymerized complexes comprising of carbon, hydrogen, silicon, and iron, which can be mostly represented by two forms: C1−4H1−5Si0−5O0−2 (iron-free) and C5−8H1−8Si0−6Fe5−8O0−2. The calculated partial molar volumes of binary volatiles in their oxidized and reduced incorporation decrease rapidly initially with pressure and then gradually at higher pressures, thereby systematically lowering silicate melt density. Our assessment of the calculated opposite effects of the volatile components and iron on melt density indicates that melt-crystal density crossovers are possible in the present-day mantle and also could have occurred in early magma ocean environments. Melts at upper mantle and transition zone conditions likely dissolve carbon and hydrogen in a wide variety of oxidized and non-oxygenated forms. Deep-seated partial melts and magma ocean remnants at lower mantle conditions may exsolve carbon as complex reduced species possibly to the core during core-mantle differentiation while retaining a majority of hydrogen as hydroxyls-associated species. 
    more » « less
  5. null (Ed.)
    Geologic processes at convergent plate margins control geochemical cycling, seismicity, and deep biosphere activity in subduction zones and suprasubduction zone lithosphere. International Ocean Discovery Program Expedition 366 was designed to address the nature of these processes in the shallow to intermediate depth of the Mariana subduction channel. Although no technology is available to permit direct sampling of the subduction channel of an intraoceanic convergent margin at depths up to 19 km, the Mariana forearc region (between the trench and the active volcanic arc) provides a means to access materials from this zone. Active conduits, resulting from fractures in the forearc, are prompted by along- and across-strike extension that allows slab-derived fluids and materials to ascend to the seafloor along associated faults, resulting in the formation of serpentinite mud volcanoes. Serpentinite mud volcanoes of the Mariana forearc are the largest mud volcanoes on Earth. Their positions adjacent to or atop fault scarps on the forearc are likely related to the regional extension and vertical tectonic deformation in the forearc. Serpentinite mudflows at these volcanoes include serpentinized forearc mantle clasts, crustal and subducted Pacific plate materials, a matrix of serpentinite muds, and deep-sourced formation fluid. Mud volcanism on the Mariana forearc occurs within 100 km of the trench, representing a range of depths and temperatures to the downgoing plate and the subduction channel. These processes have likely been active for tens of millions of years at the Mariana forearc and for billions of years on Earth. At least 19 active serpentinite mud volcanoes have been located in the Mariana forearc. Two of these mud volcanoes are Conical and South Chamorro Seamounts, which are the farthest from the Mariana Trench at 86 and 78 km, respectively. Both seamounts were cored during Ocean Drilling Program Legs 125 and 195, respectively. Data from these two seamounts represent deeper, warmer examples of the continuum of slab-derived materials as the Pacific plate subducts, providing a snapshot of how slab subduction affects fluid release, the composition of ascending fluids, mantle hydration, and the metamorphic paragenesis of subducted oceanic lithosphere. Data from the study of these two mud volcanoes constrain the pressure, temperature, and composition of fluids and materials within the subduction channel at depths of up to 19 km. Understanding such processes is necessary for elucidating factors that control seismicity in convergent margins, tectonic and magma genesis processes in the volcanic arc and backarc areas, fluid and material fluxes, and the nature and variability of environmental conditions that impact subseafloor microbial communities. Expedition 366 focused on data collection from cores recovered from three serpentinite mud volcanoes that define a continuum of subduction-channel processes to compare with results from drilling at the two previously cored serpentinite mud volcanoes and with previously collected gravity, piston, and remotely operated vehicle push cores across the trench-proximal forearc. Three serpentinite mud volcanoes (Yinazao, Fantangisña, and Asùt Tesoro) were chosen at distances 55 to 72 km from the Mariana Trench. Cores were recovered from active sites of eruption on their summit regions and on the flanks where ancient flows are overlain by more recent ones. Recovered materials show the effects of dynamic processes that are active at these sites, bringing a range of materials to the seafloor, including materials from the crust of the Pacific plate, most notably subducted seamounts (even corals). Most of the recovered material consists of serpentinite mud containing lithic clasts, which are derived from the underlying forearc crust and mantle and the subducting Pacific plate. A thin cover of pelagic sediment was recovered at many Expedition 366 sites, and at Site U1498 we cored through distal serpentinite mudflows and into the underlying pelagic sediment and volcanic ash deposits. Recovered serpentinized ultramafic rocks and mudflow matrix materials are largely uniform in major element composition, spanning a limited range in SiO2, MgO, and Fe2O3 compositions. However, variation in trace element composition reflects interstitial water composition, which differs as a function of the temperature and pressure of the underlying subduction channel. Dissolved gases H2, CH4, and C2H6 are highest at the site farthest from the trench, which also has the most active fluid discharge of the Expedition 366 serpentinite mud volcanoes. These dissolved gases and their active discharge from depth likely support active microbial communities, which were the focus of in-depth subsampling and preservation for shore-based analytical and culturing procedures. The effects of fluid discharge were also registered in the porosity and gamma ray attenuation density data indicated by higher than expected values at some of the summit sites. These higher values are consistent with overpressured fluids that slow compaction of serpentinite mud deposits. In contrast, flank sites have significantly greater decreases in porosity with depth, suggesting that processes in addition to compaction are required to achieve the observed data. Thermal measurements reveal higher heat flow values on the flanks (~31 mW/m2) than on the summits (~17 mW/m2) of the seamounts. The new 2G Enterprises superconducting rock magnetometer (liquid helium free) revealed relatively high values of both magnetization and bulk magnetic susceptibility of discrete samples related to ultramafic rocks, particularly dunite. Magnetite, a product of serpentinization, and authigenic carbonates were observed in the mudflow matrix materials. In addition to coring operations, Expedition 366 focused on the deployment and remediation of borehole casings for future observatories and set the framework for in situ experimentation. Borehole work commenced at South Chamorro Seamount, where the original-style CORK was partially removed. Work then continued at each of the three summit sites following coring operations. Cased boreholes with at least three joints of screened casing were deployed, and a plug of cement was placed at the bottom of each hole. Water samples were collected from two of the three boreholes, revealing significant inputs of formation fluids. This suggests that each of the boreholes tapped a hydrologic zone, making these boreholes suitable for experimentation with the future deployment of a CORK-Lite. 
    more » « less