skip to main content

Title: Melting of Bridgmanite Under Hydrous Shallow Lower Mantle Conditions

High pressure and temperature experiments were carried out on the oxide mixtures corresponding to the bridgmanite stoichiometry under the hydrous shallow lower mantle conditions (24–25 GPa and 1673–1873 K with 5–10 wt. % of water in the starting material). Oxide mixtures investigated correspond to MgSiO3, (Mg, Fe)SiO3, (Mg, Al, Si)O3, and (Mg, Fe, Al, Si)O3. Melting was observed in all runs. Partitioning of various elements, including Mg, Fe, Si, and H is investigated. Melting under hydrous lower mantle conditions leads to increased (Mg + Fe)O/SiO2in the melt compared to the residual solids. The residual solids often contain a large amount of stishovite, and the melt contains higher (Mg,Fe)O/SiO2ratio than the initial material. (Mg + Fe)O‐rich hydrous melt could explain the low‐velocity anomalies observed in the shallow lower mantle and a large amount of stishovite in the residual solid may be responsible for the scattering of seismic waves in the mid‐lower mantle and may explain the “stishovite paradox. Since stishovite‐rich materials are formed only when silica‐rich source rock (MORB) is melted (not a typical peridotitic rock [bulk silicate Earth]), seismic scattering in the lower mantle provides a clue on the circulation of subducted MORB materials. To estimate hydrogen content, we use a new method of estimating the water content of unquenchable melts, and also propose a new interpretation of the significance of superhydrous phase B inclusions in bridgmanite. The results provide revised values of water partitioning between solid minerals and hydrous melts that are substantially higher than previous estimates.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    High‐quality single‐crystals of (Al,Fe)‐bearing bridgmanite, Mg0.88Fe3+0.065Fe2+0.035Al0.14Si0.90O3, of hundreds of micrometer size were synthesized at 24 GPa and 1800 °C in a Kawai‐type apparatus from the starting hydrous melt containing ~6.7 wt% water. Analyses of synthesized bridgmanite using petrographic microscopy, scanning electron microscopy, and transmission electron microscopy show that the crystals are chemically homogeneous and inclusion free in micrometer‐ to nanometer‐spatial resolutions. Nanosecondary ion mass spectrometry (NanoSIMS) analyses on selected platelets show ~1,020(±70) ppm wt water (hydrogen). The high water concentration in the structure of bridgmanite was further confirmed using polarized and unpolarized Fourier‐transform infrared spectroscopy (FTIR) analyses with two pronounced OH‐stretching bands at ~3,230 and ~3,460 cm−1. Our results indicate that lower‐mantle bridgmanite can accommodate relatively high amount of water. Therefore, dehydration melting at the topmost lower mantle by downward flow of transition zone materials would require water content exceeding ~0.1 wt%.

    more » « less
  2. The solidification of a deep magma ocean occurred early in Earth’s history. Although the initial amount of H2O in Earth’s magma ocean is predicted to be low (e.g., <3000 ppm), as an incompatible element it becomes highly enriched (e.g. >10 wt%) in the final few percent of crystallization. In order to understand how a hydrous magma ocean would crystallize at the top of the lower mantle, we determined liquidus phase relations in the MgO-FeOCaO-Al2O3-SiO2-H2O system at 24 GPa. We find that the bridgmanite (brg) + stishovite (st) + melt and bridgmanite (brg) + ferropericlase (fp) + melt cotectic boundary curves trend to Mg-rich melt compositions with decreasing temperature and extend to very high H2O contents (~80 mol% H2O). The brg+st+melt curve is a subtraction curve at < ~18 mol% H2O and a reaction curve at higher H2O contents, whereas the brg+fp+melt is a subtraction curve throughout its length. The density of melts along the two cotectics leads to neutral buoyancywith respect to shallow lower mantle and transition zone minerals at H2O contents up to ~25 mol%. A transient melt-rich layer can form at the top of the lower mantle during late-stage crystallization in a mushy magma ocean when melt percolation dominates. When crystallization exceeds ~98%, hydrous melts (>25 mol% H2O) become buoyant and can percolate into and hydrate the mantle transition zone. 
    more » « less
  3. Abstract

    (Mg,Fe)O ferropericlase‐magnesiowüstite has been proposed to host the majority of Earth's sodium, but the mechanism and capacity for incorporating the alkali cation remain unclear. In this work, experiments in the laser‐heated diamond anvil cell and first‐principles calculations determine the solubility of sodium and favorability of sodium incorporation in iron‐rich magnesiowüstite relative to (Mg,Fe)SiO3bridgmanite. Reaction of Mg/(Mg + Fe) (Mg#) 55 and 28 olivine with NaCl at 33–128 GPa and 1600–3000 K produces iron‐rich magnesiowüstite containing several percent sodium, while iron‐rich bridgmanite contains little to no detectable sodium. In sodium‐saturated magnesiowüstite, sodium number [Na/(Na + Mg + Fe)] is 2–5 atomic percent at pressures below 60 GPa and drastically increases to 10–20 atomic percent at deep lower mantle pressures. For these two compositions, there is no significant dependence of the results on Mg#. Our calculations not only show consistent results with experiments but further indicate that such an increase in solubility and partitioning of Na into magnesiowüstite is driven by the spin transition in iron. These results provide fundamental constraints on the crystal chemistry of sodium at lower‐mantle conditions. If the sodium capacity of (Mg,Fe)O is not strongly dependent on Mg#, (Mg,Fe)O in the lower mantle may have the capacity to store the entire sodium budget of the Earth.

    more » « less
  4. Abstract

    Siliceous slab-derived partial melts infiltrate the sub-arc mantle and cause rock-melt reactions, which govern the formation of diverse primary arc magmas and lithological heterogeneities. The effect of bulk water content, composition of reactants, and nature of melt infiltration (porous versus channelized) on the rock-melt reactions at sub-arc conditions have been investigated by previous studies. However, the effect of multiple episodes of rock-melt reactions in such scenarios has not been investigated before. Here, we explore mantle wedge modifications through serial additions of hydrous-silicic slab partial melts and whether such a process may ultimately explain the origin of high-Mg# andesites found in arcs worldwide. A series of piston-cylinder experiments simulate a serial addition of silicic slab melts in up to three stages (I through III) at 3 GPa and 800–1050°C, using rock-melt proportions of 75–25 and 50–50. A synthetic KLB-1 and a natural rhyolite (JR-1) represented the mantle and the slab components, respectively. Right from the first rock-melt interaction, the peridotite mantle transforms into olivine-free mica-rich pyroxenites ± amphibole ± quartz/coesite in equilibrium with rhyolitic-hydrous melts (72–80 wt% SiO2 and 40–90 Mg#). The formation of olivine-free pyroxenite seems to be controlled by complex functions of T, P, rock-melt ratio, wedge composition, and silica activity of the slab-melt. Remarkably, the pyroxenites approach a melt-buffered state with progressive stages of rock-melt reactions, where those rhyolitic melts inherit and preserve the major (alkalis, Fe, Mg, Ca) and trace element slab-signature. Our results demonstrate that lithological heterogeneities such as pyroxenites formed as products of rock-melt reactions in the sub-arc mantle may function as melt ‘enablers,’ implying that they may act as pathways that enable the infiltrating melt to retain their slab signature without undergoing modification. Moreover, the density contrast between the products of rock-melt reaction (melts and residues) and the average mantle wedge (~150 to 400 kg/m3) may help forming instabilities and diapiric rise of the slab components into the mantle wedge. However, the fate of the primitive slab-melts seems to be associated with the length of the pathway of mantle interaction which explains the evident wide magma spectrum as well as their degree of slab garnet-signature dilution. This work and the existence of high-Mg# Mexican-trondhjemites indicates that almost pristine slab-melts can make their way up to crustal levels and contribute to the arc magma diversity.

    more » « less
  5. Abstract

    Silicate vapors play a key role in planetary evolution, especially dominating early stages of rocky planet formation through outgassed magma ocean atmospheres. Our open-source thermodynamic modeling software “VapoRock” combines the MELTS liquid model with gas-species properties from multiple thermochemistry tables. VapoRock calculates the partial pressures of 34 gaseous species in equilibrium with magmatic liquid in the system Si–Mg–Fe–Al–Ca–Na–K–Ti–Cr–O at desired temperatures and oxygen fugacities (fO2, or partial pressure of O2). Comparison with experiments shows that pressures and melt-oxide activities (which vary over many orders of magnitude) are reproduced to within a factor of ∼3, consistent with measurement uncertainties. We also benchmark the model against a wide selection of igneous rock compositions including bulk silicate Earth, predicting elemental vapor abundances that are comparable to (Na, Ca, and Al) or more realistic than (K, Si, Mg, Fe, and Ti) those of the closed-source MAGMA code (with maximum deviations by factors of 10–300 for K and Si). Vapor abundances depend critically on the activities of liquid components. The MELTS model underpinning VapoRock was calibrated and extensively tested on natural igneous liquids. In contrast, MAGMA’s liquid model assumes ideal mixtures of a limited set of chemically simplified pseudospecies, which only roughly approximates the nonideal compositional interactions typical of many-component natural silicate melts. Finally, we explore how relative abundances of SiO and SiO2provide a spectroscopically measurable proxy for oxygen fugacity in devolatilized exoplanetary atmospheres, potentially constrainingfO2in outgassed exoplanetary mantles.

    more » « less