skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Robust Filtered Basis Functions Approach for Feedforward Tracking Control
This paper proposes a robust filtered basis functions approach for feedforward tracking of linear time invariant systems with dynamic uncertainties. Identical to the standard filtered basis functions (FBF) approach, the robust FBF approach expresses the control trajectory as a linear combination of user-defined basis functions with unknown coefficients. The basis functions are forward filtered using a model of the plant and their coefficients are selected to minimize tracking errors. The standard FBF and robust FBF approaches differ in the filtering process. The robust FBF approach uses an optimal robust filter which is based on minimization of a frequency domain based error cost function over the dynamic uncertainty, whereas, the standard FBF approach uses the nominal model. Simulation examples and experiments on a desktop 3D printer are used to demonstrate significantly more accurate tracking of uncertain plants using robust FBF compared with the standard FBF.  more » « less
Award ID(s):
1825133
PAR ID:
10179813
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ASME 2018 Dynamic Systems and Control Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract There is growing interest in the use of the filtered basis functions (FBF) approach to track linear systems, especially nonminimum phase (NMP) plants, because of its distinct advantages compared to other tracking control methods in the literature. The FBF approach expresses the control input to the plant as a linear combination of basis functions with unknown coefficients. The basis functions are forward filtered through the plant dynamics, and the coefficients are selected such that tracking error is minimized. Similar to other feedforward control methods, the tracking accuracy of the FBF approach deteriorates in the presence of uncertainties. However, unlike other methods, the FBF approach presents flexibility in terms of the choice of the basis functions, which can be used to improve its accuracy. This paper analyzes the effect of the choice of the basis functions on the tracking accuracy of FBF, in the presence of uncertainties, using the Frobenius norm of the lifted system representation (LSR) of FBF's error dynamics. Based on the analysis, a methodology for optimal selection of basis functions to maximize robustness is proposed, together with an approach to avoid large control effort when it is applied to NMP systems. The basis functions resulting from this process are called robust basis functions. Applied experimentally to a desktop three-dimensional (3D) printer with uncertain NMP dynamics, up to 48% improvement in tracking accuracy is achieved using the proposed robust basis functions compared to B-splines, while utilizing much less control effort. 
    more » « less
  2. A hybrid filtered basis function (FBF) approach is proposed in this paper for feedforward tracking control of linear systems with unmodeled nonlinear dynamics. Unlike most available tracking control techniques, the FBF approach is very versatile; it is applicable to any type of linear system, regardless of its underlying dynamics. The FBF approach expresses the control input to a system as a linear combination of basis functions with unknown coefficients. The basis functions are forward filtered through a linear model of the system's dynamics and the unknown coefficients are selected such that tracking error is minimized. The linear models used in existing implementations of the FBF approach are typically physics-based representations of the linear dynamics of a system. The proposed hybrid FBF approach expands the application of the FBF approach to systems with unmodeled nonlinearities by learning from data. A hybrid model is formulated by combining a physics-based model of the system's linear dynamics with a data-driven linear model that approximates the unmodeled nonlinear dynamics. The hybrid model is used online in receding horizon to compute optimal control commands that minimize tracking errors. The proposed hybrid FBF approach is shown in simulations on a model of a vibration-prone 3D printer to improve tracking accuracy by up to 65.4%, compared to an existing FBF approach that does not incorporate data. 
    more » « less
  3. Abstract Accurate tracking of nonminimum phase (NMP) systems is well known to require large amounts of control effort. It is, therefore, of practical value to minimize the effort needed to achieve a desired level of tracking accuracy for NMP systems. There is growing interest in the use of the filtered basis functions (FBF) approach for tracking the control of linear NMP systems because of distinct performance advantages it has over other methods. The FBF approach expresses the control input as a linear combination of user-defined basis functions. The basis functions are forward filtered through the dynamics of the plant, and the coefficients are selected such that the tracking error is minimized. There is a wide variety of basis functions that can be used with the FBF approach, but there has been no work to date on how to select the best set of basis functions. Toward selecting the best basis functions, the Frobenius norm of the lifted system representation (LSR) of dynamics is proposed as an excellent metric for evaluating the performance of linear time varying (LTV) discrete-time tracking controllers, like FBF, independent of the desired trajectory to be tracked. Using the metric, an optimal set of basis functions that minimize the control effort without sacrificing tracking accuracy is proposed. The optimal set of basis functions is shown in simulations and experiments to significantly reduce control effort while maintaining or improving tracking accuracy compared to popular basis functions, like B-splines. 
    more » « less
  4. Accurate tracking of nonminimum phase (NMP) systems is well known to require large amounts of control effort. It is, therefore, of practical value to minimize the effort needed to achieve a desired level of tracking accuracy for NMP systems. There is growing interest in the use of the filtered basis functions (FBF) approach for tracking the control of linear NMP systems because of distinct performance advantages it has over other methods. The FBF approach expresses the control input as a linear combination of user-defined basis functions. The basis functions are forward filtered through the dynamics of the plant, and the coefficients are selected such that the tracking error is minimized. There is a wide variety of basis functions that can be used with the FBF approach, but there has been no work to date on how to select the best set of basis functions. Toward selecting the best basis functions, the Frobenius norm of the lifted system representation (LSR) of dynamics is proposed as an excellent metric for evaluating the performance of linear time varying (LTV) discrete-time tracking controllers, like FBF, independent of the desired trajectory to be tracked. Using the metric, an optimal set of basis functions that minimize the control effort without sacrificing tracking accuracy is proposed. The optimal set of basis functions is shown in simulations and experiments to significantly reduce control effort while maintaining or improving tracking accuracy compared to popular basis functions, like B-splines. 
    more » « less
  5. We present Basis-to-Basis (B2B) operator learning, a novel approach for learning operators on Hilbert spaces of functions based on the foundational ideas of function encoders. We decompose the task of learning operators into two parts: learning sets of basis functions for both the input and output spaces and learning a potentially nonlinear mapping between the coefficients of the basis functions. B2B operator learning circumvents many challenges of prior works, such as requiring data to be at fixed locations, by leveraging classic techniques such as least squares to compute the coefficients. It is especially potent for linear operators, where we compute a mapping between bases as a single matrix transformation with a closed-form solution. Furthermore, with minimal modifications and using the deep theoretical connections between function encoders and functional analysis, we derive operator learning algorithms that are directly analogous to eigen-decomposition and singular value decomposition. We empirically validate B2B operator learning on seven benchmark operator learning tasks and show that it demonstrates a two-orders-of-magnitude improvement in accuracy over existing approaches on several benchmark tasks. 
    more » « less