skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantitative and Multiplexed Fluorescence Lifetime Imaging of Intercellular Tensile Forces
Abstract Mechanical interactions between cells have been shown to play critical roles in regulating cell signaling and communications. However, the precise measurement of intercellular forces is still quite challenging, especially considering the complex environment at cell–cell junctions. In this study, we report a fluorescence lifetime‐based approach to image and quantify intercellular molecular tensions. Using this method, tensile forces among multiple ligand–receptor pairs can be measured simultaneously. We first validated our approach and developed lifetime measurement‐based DNA tension probes to image E‐cadherin‐mediated tension on epithelial cells. These probes were then further applied to quantify the correlations between E‐cadherin and N‐cadherin tensions during an epithelial–mesenchymal transition process. The modular design of these probes can potentially be used to study the mechanical features of various physiological and pathological processes.  more » « less
Award ID(s):
1846866
PAR ID:
10249043
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
60
Issue:
28
ISSN:
1433-7851
Page Range / eLocation ID:
p. 15548-15555
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cells are physically contacting with each other. Direct and precise quantification of forces at cell–cell junctions is still challenging. Herein, we have developed a DNA-based ratiometric fluorescent probe, termed DNAMeter, to quantify intercellular tensile forces. These lipid-modified DNAMeters can spontaneously anchor onto live cell membranes. The DNAMeter consists of two self-assembled DNA hairpins of different force tolerance. Once the intercellular tension exceeds the force tolerance to unfold a DNA hairpin, a specific fluorescence signal will be activated, which enables the real-time imaging and quantification of tensile forces. Using E-cadherin-modified DNAMeter as an example, we have demonstrated an approach to quantify, at the molecular level, the magnitude and distribution of E-cadherin tension among epithelial cells. Compatible with readily accessible fluorescence microscopes, these easy-to-use DNA tension probes can be broadly used to quantify mechanotransduction in collective cell behaviors. 
    more » « less
  2. Cells continuously experience and respond to different physical forces that are used to regulate their physiology and functions. Our ability to measure these mechanical cues is essential for understanding the bases of various mechanosensing and mechanotransduction processes. While multiple strategies have been developed to study mechanical forces within two-dimensional (2D) cell culture monolayers, the force measurement at cell-cell junctions in real three-dimensional (3D) cell models is still pretty rare. Considering that in real biological systems, cells are exposed to forces from 3D directions, measuring these molecular forces in their native environment is thus highly critical for the better understanding of different development and disease processes. We have recently developed a type of DNA-based molecular probe for measuring intercellular tensile forces in 2D cell models. Herein, we will report the further development and first-time usage of these molecular tension probes to visualize and detect mechanical forces within 3D spheroids and embryoid bodies (EBs). These probes can spontaneously anchor onto live cell membranes via the attached lipid moieties. By varying the concentrations of these DNA probes and their incubation time, we have first characterized the kinetics and efficiency of probe penetration and loading onto tumor spheroids and stem cell EBs of different sizes. After optimization, we have further imaged and measured E-cadherin-mediated forces in these 3D spheroids and EBs for the first time. Our results indicated that these DNA-based molecular tension probes can be used to study the spatiotemporal distributions of target mechanotransduction processes. These powerful imaging tools may be potentially applied to fill the gap between ongoing research of biomechanics in 2D systems and that in real 3D cell complexes. 
    more » « less
  3. Green, Kathleen (Ed.)
    ABSTRACT This study investigated possible mechanisms underlying differences between heterophilic and homophilic cadherin adhesions that influence intercellular mechanics and multicellular organization. Results suggest that homophilic cadherin ligation selectively activates force transduction, such that resulting signaling and mechano-transduction amplitudes are independent of cadherin-binding affinities. Epithelial (E-) and neural (N-)cadherin cooperate with distinct growth factors to mechanically activate force transduction cascades. Prior results have demonstrated that E-cadherin and epidermal growth factor receptor form force-sensitive complexes at intercellular junctions. Here, we show that the reconstitution of N-cadherin force transduction requires the co-expression of N-cadherin and fibroblast growth factor receptor. Mechanical measurements further demonstrated that homophilic ligation initiates receptor tyrosine kinase-dependent force transduction cascades, but heterophilic cadherin ligands fail to activate signaling or generate stereotypical mechano-transduction signatures. The all-or-nothing contrast between mechano-transduction by heterophilic versus homophilic cadherin adhesions supersedes differences in cadherin adhesion strength. This mechano-selectivity impacts cell spreading and traction generation on cadherin substrates. Homophilic ligation appears to be a key that selectively unlocks cadherin mechano-transduction. These findings might reconcile the roles of cadherin recognition and cell mechanics in the organization of multicellular assemblies. 
    more » « less
  4. Cell competition in epithelial tissue eliminates transformed cells expressing activated oncoproteins to maintain epithelial homeostasis. Although the process is now understood to be of mechanochemical origin, direct mechanical characterization and associated biochemical underpinnings are lacking. Here, we employ tissue-scale stress and compressibility measurements and theoretical modeling to unveil a mechanical imbalance between normal and transformed cells, which drives cell competition. In the mouse intestinal epithelium and epithelial monolayer, transformed cells get compacted during competition. Stress microscopy reveals an emergent compressive stress at the transformed loci leading to this compaction. A cell-based self-propelled Voronoi model predicts that this compressive stress originates from a difference in the collective compressibility of the competing populations. A new collective compressibility measurement technique named gel compression microscopy then elucidates a two-fold higher compressibility of the transformed population than the normal population. Mechanistically, weakened cell-cell adhesions due to reduced junctional abundance of E-cadherin in the transformed cells render them collectively more compressible than normal cells. Taken together, our findings unveil a mechanical basis for epithelial homeostasis against oncogenic transformations with implications in epithelial defense against cancer. 
    more » « less
  5. Cellular unjamming is the collective fluidization of cell motion and has been linked to many biological processes, including development, wound repair, and tumor growth. In tumor growth, the uncontrolled proliferation of cancer cells in a confined space generates mechanical compressive stress. However, because multiple cellular and molecular mechanisms may be operating simultaneously, the role of compressive stress in unjamming transitions during cancer progression remains unknown. Here, we investigate which mechanism dominates in a dense, mechanically stressed monolayer. We find that long-term mechanical compression triggers cell arrest in benign epithelial cells and enhances cancer cell migration in transitions correlated with cell shape, leading us to examine the contributions of cell–cell adhesion and substrate traction in unjamming transitions. We show that cadherin-mediated cell–cell adhesion regulates differential cellular responses to compressive stress and is an important driver of unjamming in stressed monolayers. Importantly, compressive stress does not induce the epithelial–mesenchymal transition in unjammed cells. Furthermore, traction force microscopy reveals the attenuation of traction stresses in compressed cells within the bulk monolayer regardless of cell type and motility. As traction within the bulk monolayer decreases with compressive pressure, cancer cells at the leading edge of the cell layer exhibit sustained traction under compression. Together, strengthened intercellular adhesion and attenuation of traction forces within the bulk cell sheet under compression lead to fluidization of the cell layer and may impact collective cell motion in tumor development and breast cancer progression. 
    more » « less