skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bromide ion-functionalized nanoprobes for sensitive and reliable pH measurement by surface-enhanced Raman spectroscopy
4-Mercaptopyridine (4-Mpy) is a pH reporter molecule commonly used to functionalize nanoprobes for surface-enhanced Raman spectroscopy (SERS) based pH measurements. However, nanoprobes functionalized by 4-Mpy alone have low pH sensitivity and are subject to interference by halide ions in sample media. To improve nanoprobe pH sensitivity and reliability, we functionalized gold nanoparticles (AuNPs) with both 4-Mpy and bromide ion (Br − ). Br − electrostatically stabilizes protonated 4-Mpy, thus enabling sensitive SERS detection of the protonation state of 4-Mpy as a function of pH while also reducing variability caused by external halide ions. Through optimization of the functionalization parameters, including suspension pH, [4-Mpy], and [Br − ], the developed nanoprobes enable monitoring of pH from 2.1 to 10 with high SERS activity and minimal interference from halide ions within the sample matrix. As a proof of concept, we were able to track nanoprobe location and image the pH distribution inside individual cancer cells. This study provides a novel way to engineer reliable 4-Mpy-functionalized SERS nanoprobes for the sensitive analysis of spatially localized pH features in halide ion-containing microenvironments.  more » « less
Award ID(s):
1705653
PAR ID:
10180018
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Analyst
Volume:
144
Issue:
24
ISSN:
0003-2654
Page Range / eLocation ID:
7326 to 7335
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The zebrafish is a powerful model organism to study the mechanisms governing transition metal ions within whole brain tissue. Zinc is one of the most abundant metal ions in the brain, playing a critical pathophysiological role in neurodegenerative diseases. The homeostasis of free, ionic zinc (Zn2+) is a key intersection point in many of these diseases, including Alzheimer’s disease and Parkinson’s disease. A Zn2+ imbalance can eventuate several disturbances that may lead to the development of neurodegenerative changes. Therefore, compact, reliable approaches that allow the optical detection of Zn2+ across the whole brain would contribute to our current understanding of the mechanisms that underlie neurological disease pathology. We developed an engineered fluorescence protein-based nanoprobe that can spatially and temporally resolve Zn2+ in living zebrafish brain tissue. The self-assembled engineered fluorescence protein on gold nanoparticles was shown to be confined to defined locations within the brain tissue, enabling site specific studies, compared to fluorescent protein-based molecular tools, which diffuse throughout the brain tissue. Two-photon excitation microscopy confirmed the physical and photometrical stability of these nanoprobes in living zebrafish (Danio rerio) brain tissue, while the addition of Zn2+ quenched the nanoprobe fluorescence. Combining orthogonal sensing methods with our engineered nanoprobes will enable the study of imbalances in homeostatic Zn2+ regulation. The proposed bionanoprobe system offers a versatile platform to couple metal ion specific linkers and contribute to the understanding of neurological diseases. 
    more » « less
  2. In meeting rapidly growing demands for energy and clean water, engineered systems such as unconventional oil and gas recovery and desalination processes produce large amounts of briny water. In the environment, these highly concentrated halides can be oxidized and transformed to reactive halogen radicals, whose roles in the degradation and transformation of organic pollutants have been studied. However, redox reactions between halogen radicals and heavy metal ions are still poorly understood. In this work, we found that aqueous manganese ions (Mn2+) could be oxidized to Mn oxide solids by reactive halogen radicals generated from reactions between halide ions and hydroxyl radicals or between halide ions and triplet state dissolved organic matter. In particular, more Mn2+ was oxidized by Br radicals generated from bromide ion (Br−) than by Cl radicals generated from chloride ion (Cl−), even though the concentrations of Br− in surface waters are much lower than Cl− concentrations. In addition, the highly concentrated halides greatly increased the ionic strength of the solution, affecting Mn2+ oxidation kinetics and the crystallinity and oxidation state of the newly formed Mn oxides. These newly discovered pathways involving Mn2+(aq) and reactive halogen radicals aid in understanding the generation of abiotic Mn oxide solids and forecasting their redox activities. Moreover, this work emphasizes the critical need for a better knowledge of the roles of reactive halogen radicals in inorganic redox reactions. 
    more » « less
  3. We report a facile method to prepare polymer-grafted plasmonic metal nanoparticles (NPs) that exhibit pH-responsive surface-enhanced Raman scattering (SERS). The concept is based on the use of pH- responsive polymers, such as poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH), as multi- dentate ligands to wrap around the surface of NPs instead of forming polymer brushes. Upon changing the solvent quality, the grafted pH-responsive polymers would drive reversible aggregation of NPs, leading to a decreased interparticle distance. This creates numerous hot spots, resulting in a secondary enhancement of SERS as compared to the SERS from discrete NPs. For negatively charged PAA-grafted NPs, the SERS response at pH 2.5 showed a secondary enhancement of up to 104-fold as compared to the response for discrete NPs at pH 12. Similarly, positively charged PAH-grafted AuNPs showed an oppo- site response to pH. We demonstrated that enhanced SERS with thiol-containing and charged molecular probes was indeed from the pH-driven solubility change of polymer ligands. Our method is different from the conventional SERS sensors in the solid state. With pH-responsive polymer-grafted NPs, SERS can be performed in solution with high reproducibility and sensitivity but without the need for sample pre-con- centration. These findings could pave the way for innovative designs of polymer ligands for metal NPs where polymer ligands do not compromise interparticle plasmon coupling. 
    more » « less
  4. The exploration of the plasmonic field enhancement of nanoprobes consisting of gold and magnetic core@gold shell nanoparticles has found increasing application for the development of surface-enhanced Raman spectroscopy (SERS)-based biosensors. The understanding of factors controlling the electromagnetic field enhancement, as a result of the plasmonic field enhancement of the nanoprobes in SERS biosensing applications, is critical for the design and preparation of the optimal nanoprobes. This report describes findings from theoretical calculations of the electromagnetic field intensity of dimer models of gold and magnetic core@gold shell nanoparticles in immunoassay SERS detection of biomarkers. The electromagnetic field intensities for a series of dimeric nanoprobes with antibody–antigen–antibody binding defined interparticle distances were examined in terms of nanoparticle sizes, core–shell sizes, and interparticle spacing. The results reveal that the electromagnetic field enhancement not only depended on the nanoparticle size and the relative core size and shell thicknesses of the magnetic core@shell nanoparticles but also strongly on the interparticle spacing. Some of the dependencies are also compared with experimental data from SERS detection of selected cancer biomarkers, showing good agreement. The findings have implications for the design and optimization of functional nanoprobes for SERS-based biosensors. 
    more » « less
  5. Abstract Highly sensitive stimuli‐responsive luminescent materials are crucial for applications in optical sensing, security, and anticounterfeiting. Here, we report two zero‐dimensional (0D) copper(I) halides, (TEP)2Cu2Br4, (TEP)2Cu4Br6, and 1D (TEP)3Ag6Br9, which are comprised of isolated [Cu2Br4]2−, [Cu4Br6]2−, and [Ag6Br9]3−polyanions, respectively, separated by TEP+(tetraethylphosphonium [TEP]) cations. (TEP)2Cu2Br4and (TEP)2Cu4Br6demonstrate greenish‐white and orange‐red emissions, respectively, with near unity photoluminescence quantum yields, while (TEP)3Ag6Br9is a poor light emitter. Optical spectroscopy measurements and density‐functional theory calculations reveal that photoemissions of these compounds originate from self‐trapped excitons due to the excited‐state distortions in the copper(I) halide units. Crystals of Cu(I) halides are radioluminescence active at room temperature under both X‐ and γ‐rays exposure. The light yields up to 15,800 ph/MeV under 662 keV γ‐rays of137Cs suggesting their potential for scintillation applications. Remarkably, (TEP)2Cu2Br4and (TEP)2Cu4Br6are interconvertible through chemical stimuli or reverse crystallization. In addition, both compounds demonstrate luminescence on‐off switching upon thermal stimuli. The sensitivity of (TEP)2Cu2Br4and (TEP)2Cu4Br6to the chemical and thermal stimuli coupled with their ultrabright emission allows their consideration for applications such as solid‐state lighting, sensing, information storage, and anticounterfeiting. 
    more » « less