skip to main content

Search for: All records

Award ID contains: 1705653

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Surface-enhanced Raman spectroscopy (SERS) has great potential as an analytical technique for environmental analyses. In this study, we fabricated highly porous gold (Au) supraparticles ( i.e. , ∼100 μm diameter agglomerates of primary nano-sized particles) and evaluated their applicability as SERS substrates for the sensitive detection of environmental contaminants. Facile supraparticle fabrication was achieved by evaporating a droplet containing an Au and polystyrene (PS) nanoparticle mixture on a superamphiphobic nanofilament substrate. Porous Au supraparticles were obtained through the removal of the PS phase by calcination at 500 °C. The porosity of the Au supraparticles was readily adjusted by varying the volumetric ratios of Au and PS nanoparticles. Six environmental contaminants (malachite green isothiocyanate, rhodamine B, benzenethiol, atrazine, adenine, and gene segment) were successfully adsorbed to the porous Au supraparticles, and their distinct SERS spectra were obtained. The observed linear dependence of the characteristic Raman peak intensity for each environmental contaminant on its aqueous concentration reveals the quantitative SERS detection capability by porous Au supraparticles. The limit of detection (LOD) for the six environmental contaminants ranged from ∼10 nM to ∼10 μM, which depends on analyte affinity to the porous Au supraparticles and analyte intrinsic Raman cross-sections. The porous Au supraparticlesmore »enabled multiplex SERS detection and maintained comparable SERS detection sensitivity in wastewater influent. Overall, we envision that the Au supraparticles can potentially serve as practical and sensitive SERS devices for environmental analysis applications.« less
    Free, publicly-accessible full text available November 15, 2023
  2. Free, publicly-accessible full text available May 10, 2023
  3. Ambient temperature and humidity strongly affect inactivation rates of enveloped viruses, but a mechanistic, quantitative theory of these effects has been elusive. We measure the stability of SARS-CoV-2 on an inert surface at nine temperature and humidity conditions and develop a mechanistic model to explain and predict how temperature and humidity alter virus inactivation. We find SARS-CoV-2 survives longest at low temperatures and extreme relative humidities (RH); median estimated virus half-life is >24 hours at 10C and 40% RH, but ~1.5 hours at 27C and 65% RH. Our mechanistic model uses fundamental chemistry to explain why inactivation rate increases with increased temperature and shows a U-shaped dependence on RH. The model accurately predicts existing measurements of five different human coronaviruses, suggesting that shared mechanisms may affect stability for many viruses. The results indicate scenarios of high transmission risk, point to mitigation strategies, and advance the mechanistic study of virus transmission.
  4. Bacterial cellulose nanocrystals (BCNCs) are biocompatible cellulose nanomaterials that can host guest nanoparticles to form hybrid nanocomposites with a wide range of applications. Herein, we report the synthesis of a hybrid nanocomposite that consists of plasmonic gold nanoparticles (AuNPs) and superparamagnetic iron oxide (Fe 3 O 4 ) nanoparticles supported on BCNCs. As a proof of concept, the hybrid nanocomposites were employed to isolate and detect malachite green isothiocyanate (MGITC) via magnetic separation and surface-enhanced Raman scattering (SERS). Different initial gold precursor (Au 3+ ) concentrations altered the size and morphology of the AuNPs formed on the nanocomposites. The use of 5 and 10 mM Au 3+ led to a heterogenous mix of spherical and nanoplate AuNPs with increased SERS enhancements, as compared to the more uniform AuNPs formed using 1 mM Au 3+ . Rapid and sensitive detection of MGITC at concentrations as low as 10 −10 M was achieved. The SERS intensity of the normalized Raman peak at 1175 cm −1 exhibited a log-linear relationship for MGITC concentrations between 2 × 10 −10 and 2 × 10 −5 M for Au@Fe 3 O 4 @BCNCs. These results suggest the potential of these hybrid nanocomposites for application in amore »broad range of analyte detection strategies.« less
  5. 4-Mercaptopyridine (4-Mpy) is a pH reporter molecule commonly used to functionalize nanoprobes for surface-enhanced Raman spectroscopy (SERS) based pH measurements. However, nanoprobes functionalized by 4-Mpy alone have low pH sensitivity and are subject to interference by halide ions in sample media. To improve nanoprobe pH sensitivity and reliability, we functionalized gold nanoparticles (AuNPs) with both 4-Mpy and bromide ion (Br − ). Br − electrostatically stabilizes protonated 4-Mpy, thus enabling sensitive SERS detection of the protonation state of 4-Mpy as a function of pH while also reducing variability caused by external halide ions. Through optimization of the functionalization parameters, including suspension pH, [4-Mpy], and [Br − ], the developed nanoprobes enable monitoring of pH from 2.1 to 10 with high SERS activity and minimal interference from halide ions within the sample matrix. As a proof of concept, we were able to track nanoprobe location and image the pH distribution inside individual cancer cells. This study provides a novel way to engineer reliable 4-Mpy-functionalized SERS nanoprobes for the sensitive analysis of spatially localized pH features in halide ion-containing microenvironments.