skip to main content


Title: Polarization whorls from M87* at the event horizon telescope
The event horizon telescope (EHT) is expected to soon produce polarimetric images of the supermassive black hole at the centre of the neighbouring galaxy M87. There are indications that this black hole is rapidly spinning. General relativity predicts that such a high-spin black hole has an emergent conformal symmetry near its event horizon. In this paper, we use this symmetry to analytically predict the polarized near-horizon emissions to be seen at the EHT and find a distinctive pattern of whorls aligned with the spin.  more » « less
Award ID(s):
1707938
NSF-PAR ID:
10180144
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volume:
476
Issue:
2237
ISSN:
1364-5021
Page Range / eLocation ID:
20190618
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In 1977, Blandford and Znajek showed that the electromagnetic field surrounding a rotating black hole can harvest its spin energy and use it to power a collimated astrophysical jet, such as the one launched from the center of the elliptical galaxy M87. Today, interferometric observations with the Event Horizon Telescope (EHT) are delivering high-resolution, event-horizon-scale, polarimetric images of the supermassive black hole M87* at the jet launching point. These polarimetric images offer an unprecedented window into the electromagnetic field structure around a black hole. In this paper, we show that a simple polarimetric observable—the phase ∠β2of the second azimuthal Fourier mode of the linear polarization in a near-horizon image—depends on the sign of the electromagnetic energy flux and therefore provides a direct probe of black hole energy extraction. In Boyer–Lindquist coordinates, the Poynting flux for axisymmetric electromagnetic fields is proportional to the productBϕBr. The phase ∠β2likewise depends on the ratioBϕ/Br, thereby enabling an observer to determine the direction of electromagnetic energy flow in the near-horizon environment experimentally. Data from the 2017 EHT observations of M87* are consistent with electromagnetic energy outflow. Currently envisioned multifrequency observations of M87* will achieve higher dynamic range and angular resolution, and hence deliver measurements of ∠β2closer to the event horizon as well as better constraints on Faraday rotation. Such observations will enable a definitive test for energy extraction from the black hole M87*.

     
    more » « less
  2. Abstract

    The Event Horizon Telescope (EHT) has produced images of two supermassive black holes, Messier 87* (M 87*) and Sagittarius A* (Sgr A*). The EHT collaboration used these images to indirectly constrain black hole parameters by calibrating measurements of the sky-plane emission morphology to images of general relativistic magnetohydrodynamic (GRMHD) simulations. Here, we develop a model for directly constraining the black hole mass, spin, and inclination through signatures of lensing, redshift, and frame dragging, while simultaneously marginalizing over the unknown accretion and emission properties. By assuming optically thin, axisymmetric, equatorial emission near the black hole, our model gains orders of magnitude in speed over similar approaches that require radiative transfer. Using 2017 EHT M 87* baseline coverage, we use fits of the model to itself to show that the data are insufficient to demonstrate existence of the photon ring. We then survey time-averaged GRMHD simulations fitting EHT-like data, and find that our model is best-suited to fitting magnetically arrested disks, which are the favored class of simulations for both M 87* and Sgr A*. For these simulations, the best-fit model parameters are within ∼10% of the true mass and within ∼10° for inclination. With 2017 EHT coverage and 1% fractional uncertainty on amplitudes, spin is unconstrained. Accurate inference of spin axis position angle depends strongly on spin and electron temperature. Our results show the promise of directly constraining black hole spacetimes with interferometric data, but they also show that nearly identical images permit large differences in black hole properties, highlighting degeneracies between the plasma properties, spacetime, and, most crucially, the unknown emission geometry when studying lensed accretion flow images at a single frequency.

     
    more » « less
  3. ABSTRACT

    Horizon-scale observations of the jetted active galactic nucleus M87 are compared with simulations spanning a broad range of dissipation mechanisms and plasma content in three-dimensional general relativistic flows around spinning black holes. Observations of synchrotron radiation from radio to X-ray frequencies can be compared with simulations by adding prescriptions specifying the relativistic electron-plus-positron distribution function and associated radiative transfer coefficients. A suite of time-varying simulations with various spins, plasma magnetizations and turbulent heating and equipartition-based emission prescriptions (and piecewise combinations thereof) is chosen to represent distinct possibilities for the M87 jet/accretion flow/black hole system. Simulation jet morphology, polarization, and variation are then ‘observed’ and compared with real observations to infer the rules that govern the polarized emissivity. Our models support several possible spin/emission model/plasma composition combinations supplying the jet in M87, whose black hole shadow has been observed down to the photon ring at 230 GHz by the Event Horizon Telescope (EHT). Net linear polarization and circular polarization constraints favour magnetically arrested disc (MAD) models whereas resolved linear polarization favours standard and normal evolution (SANE) in our parameter space. We also show that some MAD cases dominated by intrinsic circular polarization have near-linear V/I dependence on un-paired electron or positron content while SANE polarization exhibits markedly greater positron-dependent Faraday effects – future probes of the SANE/MAD dichotomy and plasma content with the EHT. This is the second work in a series also applying the ‘observing’ simulations methodology to near-horizon regions of supermassive black holes in Sgr A* and 3C 279.

     
    more » « less
  4. Abstract The direct detection of a bright, ring-like structure in horizon-resolving images of M87* by the Event Horizon Telescope (EHT) is a striking validation of general relativity. The angular size and shape of the ring is a degenerate measure of the location of the emission region, mass, and spin of the black hole. However, we show that the observation of multiple rings, corresponding to the low-order photon rings, can break this degeneracy and produce mass and spin measurements independent of the shape of the rings. We describe two potential experiments that would measure the spin. In the first, observations of the direct emission and n = 1 photon ring are made at multiple epochs with different emission locations. This method is conceptually similar to spacetime constraints that arise from variable structures (or hot spots) in that it breaks the near-perfect degeneracy between emission location, mass, and spin for polar observers using temporal variability. In the second, observations of the direct emission and n = 1 and n = 2 photon rings are made during a single epoch. For both schemes, additional observations comprise a test of general relativity. Thus, comparisons of EHT observations in 2017 and 2018 may be capable of producing the first horizon-scale spin estimates of M87* inferred from strong lensing alone. Additional observation campaigns from future high-frequency, Earth-sized, and space-based radio interferometers can produce high-precision tests of general relativity. 
    more » « less
  5. Abstract The black hole images obtained with the Event Horizon Telescope (EHT) are expected to be variable at the dynamical timescale near their horizons. For the black hole at the center of the M87 galaxy, this timescale (5–61 days) is comparable to the 6 day extent of the 2017 EHT observations. Closure phases along baseline triangles are robust interferometric observables that are sensitive to the expected structural changes of the images but are free of station-based atmospheric and instrumental errors. We explored the day-to-day variability in closure-phase measurements on all six linearly independent nontrivial baseline triangles that can be formed from the 2017 observations. We showed that three triangles exhibit very low day-to-day variability, with a dispersion of ∼3°–5°. The only triangles that exhibit substantially higher variability (∼90°–180°) are the ones with baselines that cross the visibility amplitude minima on the u – v plane, as expected from theoretical modeling. We used two sets of general relativistic magnetohydrodynamic simulations to explore the dependence of the predicted variability on various black hole and accretion-flow parameters. We found that changing the magnetic field configuration, electron temperature model, or black hole spin has a marginal effect on the model consistency with the observed level of variability. On the other hand, the most discriminating image characteristic of models is the fractional width of the bright ring of emission. Models that best reproduce the observed small level of variability are characterized by thin ring-like images with structures dominated by gravitational lensing effects and thus least affected by turbulence in the accreting plasmas. 
    more » « less