skip to main content


Title: Supporting Teachers Supporting Students: Iterative Development of TIPS in a Teacher Dashboard.
When implementing the Next Generation Science Standards, it is challenging for teachers to support students on inquiry practices; technological tools are a good solution to help inform teachers’ pedagogical practices. In this study, we developed actionable, evidence-based Teacher Inquiry Practice Supports (TIPS) that are presented as fine-grained real-time alerts within the teacher dashboard Inq-Blotter. These TIPS aid teachers in providing detailed support to students in order to scaffold students’ specific inquiry difficulties on the practices.  more » « less
Award ID(s):
1902647
NSF-PAR ID:
10180256
Author(s) / Creator(s):
Date Published:
Journal Name:
14th International Conference of the Learning Sciences
Volume:
3
Page Range / eLocation ID:
1769-1770
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. When implementing the Next Generation Science Standards, it is challenging for teachers to support students on inquiry practices; technological tools are a good solution to help inform teachers’ pedagogical practices. In this study, we developed actionable, evidence-based Teacher Inquiry Practice Supports (TIPS) that are presented as fine-grained real-time alerts within the teacher dashboard Inq-Blotter. These TIPS aid teachers in providing detailed support to students in order to scaffold students’ specific inquiry difficulties on the practices. 
    more » « less
  2. To support teachers in providing all students with opportunities to engage in engineering learning activities, research must examine the ways that elementary teachers support how diverse learners engage with engineering ideas and practices. This study focuses on two teachers' verbal supports in classroom discussions across two class sections of a four-week, NGSS-aligned unit that challenged students to redesign their school to reduce water runoff. We examine the research question: How and to what extent do upper-elementary teachers verbally support students' engagement with engineering practices across diverse classroom contexts in an NGSS-aligned integrated science unit? Classroom audio data was collected daily and coded to analyze support through different purposes of teacher talk. Results reveal the purpose of teachers’ talk often varied between the class sections depending on the instructional activity and indicate that teachers utilized a variety of supports toward students' engagement in different engineering practices. In one class, with a large percentage of students with individualized educational plans, teachers provided more epistemic talk about the engineering practices to contextualize the particular activities. For the other class, with a large percentage of students in advanced mathematics, teachers provided more opportunities for students to engage in discussion and support for students to do engineering. This difference in supports may decrease the opportunities for some students to rigorously engage in engineering ideas and practices. This study can inform future research on the kinds of educative supports needed to guide teaching of integrated engineering activities for diverse students. 
    more » « less
  3. Wang, N. ; Rebolledo-Mendez, G. ; Matsuda, N. ; Santos, O.C. ; Dimitrova, V. (Ed.)
    Research indicates that teachers play an active and important role in classrooms with AI tutors. Yet, our scientific understanding of the way teacher practices around AI tutors mediate student learning is far from complete. In this paper, we investigate spatiotemporal factors of student-teacher interactions by analyzing student engagement and learning with an AI tutor ahead of teacher visits (defined as episodes of a teacher being in close physical proximity to a student) and immediately following teacher visits. To conduct such integrated, temporal analysis around the moments when teachers visit students, we collect fine-grained, time-synchronized data on teacher positions in the physical classroom and student interactions with the AI tutor. Our case study in a K12 math classroom with a veteran math teacher provides some indications on factors that might affect a teacher’s decision to allocate their limited classroom time to their students and what effects these interactions have on students. For instance, teacher visits were associated more with students’ in-the-moment behavioral indicators (e.g., idleness) than a broader, static measure of student needs such as low prior knowledge. While teacher visits were often associated with positive changes in student behavior afterward (e.g., decreased idleness), there could be a potential mismatch between students visited by the teacher and who may have needed it more at that time (e.g., students who were disengaged for much longer). Overall, our findings indicate that teacher visits may yield immediate benefits for students but also that it is challenging for teachers to meet all needs - suggesting the need for better tool support. 
    more » « less
  4. Abstract Reformed science curricula provide opportunities for students to engage with authentic science practices. However, teacher implementation of such curricula requires teachers to consider their role in the classroom, including realigning instructional decisions with the epistemic aims of science. Guiding newcomers in science can take place in settings ranging from the classroom to the undergraduate research laboratory. We suggest thinking about the potential intersections of guiding students across these contexts is important. We describe the Classroom‐Research‐Mentoring (CRM) Framework as a novel lens for examining science practice‐based instruction. We present a comparative case study of two teachers as they instruct undergraduate students in a model‐based inquiry laboratory. We analyzed stimulated‐recall episodes uncovering how these teachers interacted with their students and the rationale behind their instructional choices. Through the application of the CRM Framework, we revealed ways teachers can have instructional goals that align with those of a research mentor. For example, our teachers had the goals of “creating an inclusive environment open to student ideas,” “acknowledging students as scientists,” and “focusing students on skills and ideas needed to solve biological problems.” We suggest three functions of research mentoring that translate across the classroom and research laboratory settings: (1) build a shared understanding of epistemic aims, (2) support learners in the productive use of science practices, and (3) motivate learner engagement in science practices. 
    more » « less
  5. Abstract  
    more » « less