skip to main content


Title: Using Innovative Methods to Explore the Potential of an Alerting Dashboard for Science Inquiry.
Educational technologies, such as teacher dashboards, are being developed to support teachers’ instruction and students’ learning. Specifically, dashboards support teachers in providing the just-in-time instruction needed by students in complex contexts such as science inquiry. In this study, we used the Inq-Blotter teacher-alerting dashboard to investigate whether teacher support elicited by the technology influenced students’ inquiry performance in a science intelligent tutoring system, Inq-ITS. Results indicated that students’ inquiry improved after receiving teachers’ help, elicited by the Inq-Blotter alerts. This inquiry improvement was significantly greater than for matched students who did not receive help from the teacher in response to alerts. Epistemic network analyses were then used to investigate the patterns in the discursive supports provided to students by teachers. These analyses revealed significant differences in the types of support that fostered (versus did not foster) student improvement; differences across teachers were also found. Overall, this study used innovative tools and analyses to understand how teachers use this technological genre of alerting dashboards to dynamically support students in science inquiry.  more » « less
Award ID(s):
1902647
NSF-PAR ID:
10309044
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of learning analytics
Volume:
8
Issue:
2
ISSN:
1929-7750
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. When implementing the Next Generation Science Standards, it is challenging for teachers to support students on inquiry practices; technological tools are a good solution to help inform teachers’ pedagogical practices. In this study, we developed actionable, evidence-based Teacher Inquiry Practice Supports (TIPS) that are presented as fine-grained real-time alerts within the teacher dashboard Inq-Blotter. These TIPS aid teachers in providing detailed support to students in order to scaffold students’ specific inquiry difficulties on the practices. 
    more » « less
  2. When implementing the Next Generation Science Standards, it is challenging for teachers to support students on inquiry practices; technological tools are a good solution to help inform teachers’ pedagogical practices. In this study, we developed actionable, evidence-based Teacher Inquiry Practice Supports (TIPS) that are presented as fine-grained real-time alerts within the teacher dashboard Inq-Blotter. These TIPS aid teachers in providing detailed support to students in order to scaffold students’ specific inquiry difficulties on the practices. 
    more » « less
  3. null (Ed.)
    Teacher education is facing challenges given the recent incorporation of engineering practices and core ideas into the Next Generation Science Standards and state standards of learning. To help teachers meet these standards in their future classrooms, education courses for preservice teachers [PSTs] must provide opportunities to increase science and engineering knowledge, and the associated pedagogies. To address this need, Ed+gineering, an NSF-funded multidisciplinary service-learning project, was implemented to study ways in which PSTs are prepared to meet this challenge. This study provides the models and supporting data for four unique methods of infusion of engineering skills and practices into an elementary science methods course. The four models differ in mode of course delivery, integration of a group project (with or without partnering undergraduate engineering students), and final product (e.g., no product, video, interactive presentation, live lesson delivery). In three of the models, teams of 4-6 undergraduates collaborated to design and deliver (when applicable) lessons for elementary students. This multiple semester, mixed-methods research study, explored the ways in which four unique instructional models, with varied levels of engineering instruction enhancement, influenced PSTs’ science knowledge and pedagogical understanding. Both quantitative (e.g., science content knowledge assessment) and qualitative (e.g., student written reflections) data were used to assess science knowledge gains and pedagogical understanding. Findings suggest that the PSTs learned science content and were often able to explain particular science/ engineering concepts following the interventions. PSTs in more enhanced levels of intervention also shared ways in which their lessons reflected their students’ cultures through culturally responsive pedagogical strategies and how important engineering integration is to the elementary classroom, particularly through hands-on, inquiry-based instruction. 
    more » « less
  4. Through a mixed-methods approach that utilized teacher surveys and a focus group with computer science (CS) instructional coaches, this study examined elementary teachers’ confidence in meeting the needs of students with disabilities, the extent to which the teachers could use the Universal Design for Learning (UDL) framework in CS education, and the strategies that their CS instructional coaches used with them to help meet the needs of all learners, including those with disabilities. Findings from a Wilcoxon signed-rank test and a general linear regression of the teacher surveys revealed that teachers’ confidence in teaching CS and in meeting the needs of students with disabilities increased over the 5 month coaching study, but their understanding of UDL remained low throughout the study. A qualitative thematic analysis of open-response survey questions revealed that the teachers could identify instructional strategies that support the inclusion of students with disabilities in CS instruction. These strategies aligned with high leverage practices (HLPs) and included modeling, the use of explicit instruction, and opportunities for repeated instruction. When asked to identify UDL approaches, however, they had more difficulty. The focus group with coaches revealed that the coaches’ primary aim related broadly to equity and specifically to access to and the quality of CS instruction. However, although they introduced UDL-based strategies, they struggled to systematically incorporate UDL into coaching activities and did not explicitly label these strategies as part of the UDL framework on a consistent basis. This finding explains, to a large extent, the teachers’ limited understanding of UDL in the context of CS education. 
    more » « less
  5. Abstract Background

    With the increasing popularity of distance education, how to engage students in online inquiry‐based laboratories remains challenging for science teachers. Current remote labs mostly adopt a centralized model with limited flexibility left for teachers' just‐in‐time instruction based on students' real‐time science practices.

    Objectives

    The goal of this research is to investigate the impact of a non‐centralized remote lab on students' cognitive and behavioural engagement.

    Methods

    A mixed‐methods design was adopted. Participants were the high school students enrolled in two virtual chemistry classes. Remote labs 2.0, branded as Telelab, supports a non‐centralized model of remote inquiry that can enact more interactive hands‐on labs anywhere, anytime. Teleinquiry Instructional Model was used to guide the curriculum design. Students' clickstreams logs and instruction timestamps were analysed and visualized. Multiple regression analysis was used to determine whether engagement levels influence their conceptual learning. Behavioural engagement patterns were corroborated with survey responses.

    Results and Conclusions

    We found approximate synchronizations between student–teacher–lab interactions in the heatmap. The guided inquiry enabled by Telelab facilitates real‐time communications between instructors and students. Students' conceptual learning is found to be impacted by varying engagement levels. Students' behavioural engagement patterns can be visualized and fed to instructors to inform learning progress and enact just‐in‐time instruction.

    Implications

    Telelab offers a model of remote labs 2.0 that can be easily customized to live stream hands‐on teleinquiry. It enhances engagement and gives participants a sense of telepresence. Providing a customizable teleinquiry curriculum for practitioners may better prepare them to teach inquiry‐based laboratories online.

     
    more » « less