Abstract Mass extinctions are natural experiments on the short- and long-term consequences of pushing biotas past breaking points, often with lasting effects on the structure and function of biodiversity. General properties of mass extinctions—exceptionally severe, taxonomically broad, global losses of taxa—are starting to come into focus through comparisons among dimensions of biodiversity, including morphological, functional, and phylogenetic diversity. Notably, functional diversity tends to persist despite severe losses of taxonomic diversity, whereas taxic and morphological losses may or may not be coupled. One of the biggest challenges in synthesizing and extracting general consequences of these events has been that they are often driven by multiple, interacting pressures, and the taxa and their traits vary among events, making it difficult to link single stressors to specific traits. Ongoing improvements in the taxonomic and stratigraphic resolution of these events for multiple clades will sharpen tests for selectivity and help to isolate hitchhiking effects, whereby organismal traits are carried by differential survival or extinction of taxa owing to other organismal or higher-level attributes, such as geographic-range size. Direct comparative analyses across multiple extinction events will also clarify the impacts of particular drivers on taxa, functional traits, and morphologies. It is not just the extinction filter that deserves attention, as the longer-term impact of extinctions derives in part from their ensuing rebounds. More work is needed to uncover the biotic and abiotic circumstances that spur some clades into re-diversification while relegating others to marginal shares of biodiversity. Combined insights from mass extinction filters and their rebounds bring a macroevolutionary view to approaching the biodiversity crisis in the Anthropocene, helping to pinpoint the clades, functional groups, and morphologies most vulnerable to extinction and failed rebounds. 
                        more » 
                        « less   
                    
                            
                            A framework for the integrated analysis of the magnitude, selectivity, and biotic effects of extinction and origination
                        
                    
    
            Abstract The taxonomic and ecologic composition of Earth's biota has shifted dramatically through geologic time, with some clades going extinct while others diversified. Here, we derive a metric that quantifies the change in biotic composition due to extinction or origination and show that it equals the product of extinction/origination magnitude and selectivity (variation in magnitude among groups). We also define metrics that describe the extent to which a recovery (1) reinforced or reversed the effects of extinction on biotic composition and (2) changed composition in ways uncorrelated with the extinction. To demonstrate the approach, we analyzed an updated compilation of stratigraphic ranges of marine animal genera. We show that mass extinctions were not more selective than background intervals at the phylum level; rather, they tended to drive greater taxonomic change due to their higher magnitudes. Mass extinctions did not represent a separate class of events with respect to either strength of selectivity or effect. Similar observations apply to origination during recoveries from mass extinctions, and on average, extinction and origination were similarly selective and drove similar amounts of biotic change. Elevated origination during recoveries drove bursts of compositional change that varied considerably in effect. In some cases, origination partially reversed the effects of extinction, returning the biota toward the pre-extinction composition; in others, it reinforced the effects of the extinction, magnifying biotic change. Recoveries were as important as extinction events in shaping the marine biota, and their selectivity deserves systematic study alongside that of extinction. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1738121
- PAR ID:
- 10180356
- Date Published:
- Journal Name:
- Paleobiology
- Volume:
- 46
- Issue:
- 1
- ISSN:
- 0094-8373
- Page Range / eLocation ID:
- 1 to 22
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Ecological observations and paleontological data show that communities of organisms recur in space and time. Various observations suggest that communities largely disappear in extinction events and appear during radiations. This hypothesis, however, has not been tested on a large scale due to a lack of methods for analyzing fossil data, identifying communities, and quantifying their turnover. We demonstrate an approach for quantifying turnover of communities over the Phanerozoic Eon. Using network analysis of fossil occurrence data, we provide the first estimates of appearance and disappearance rates for marine animal paleocommunities in the 100 stages of the Phanerozoic record. Our analysis of 124,605 fossil collections (representing 25,749 living and extinct marine animal genera) shows that paleocommunity disappearance and appearance rates are generally highest in mass extinctions and recovery intervals, respectively, with rates three times greater than background levels. Although taxonomic change is, in general, a fair predictor of ecologic reorganization, the variance is high, and ecologic and taxonomic changes were episodically decoupled at times in the past. Extinction rate, therefore, is an imperfect proxy for ecologic change. The paleocommunity turnover rates suggest that efforts to assess the ecological consequences of the present-day biodiversity crisis should focus on the selectivity of extinctions and changes in the prevalence of biological interactions.more » « less
- 
            Abstract Many of the most dramatic patterns in biological diversity are created by “Perfect Storms” —rare combinations of mutually reinforcing factors that push origination, extinction, or diversity accommodation to extremes. These patterns include the strongest diversification events (e.g. the Cambrian Explosion of animal body plans), the proliferation of hyperdiverse clades (e.g. insects, angiosperms), the richest biodiversity hotspots (e.g. the New World Tropical Montane regions and the ocean's greatest diversity pump, the tropical West Pacific), and the most severe extinction events (e.g. the Big Five mass extinctions of the Phanerozoic). Human impacts on the modern biota are also a Perfect Storm, and both mitigation and restoration strategies should be framed accordingly, drawing on biodiversity's responses to multi-driver processes in the geologic past. This approach necessarily weighs contributing factors, identifying their often non-linear and time-dependent interactions, instead of searching for unitary causes.more » « less
- 
            Two of the traits most often observed to correlate with extinction risk in marine animals are geographical range and body size. However, the relative effects of these two traits on extinction risk have not been investigated systematically for either background times or during mass extinctions. To close this knowledge gap, we measure and compare extinction selectivity of geographical range and body size of genera within five classes of benthic marine animals across the Phanerozoic using capture–mark–recapture models. During background intervals, narrow geographical range is strongly associated with greater extinction probability, whereas smaller body size is more weakly associated with greater extinction probability. During mass extinctions, the association between geographical range and extinction probability is reduced in every class and fully eliminated in some, whereas the association between body size and extinction probability varies in strength and direction across classes. While geographical range is universally the stronger predictor of survival during background intervals, variation among classes during mass extinction suggests a fundamental shift in extinction processes during these global catastrophes.more » « less
- 
            The Paleozoic Era was host to many significant biotic events such as the Great Ordovician Biodiversification Event, the Late Ordovician Mass Extinction, and the Late Devonian extinctions. These events were likely catalyzed by abiotic (e.g. climate) versus biotic drivers. Echinoderms are globally distributed, temporally expansive, and easily identifiable; these qualities make them an excellent model system to test hypotheses relating biodiversity with abiotic factors. Biodiversity patterns of echinoderms are currently not well understood because of a lack of focus on the dynamics of the entire clade. To remedy this, we have worked to expand current understandings of Paleozoic echinoderm diversity patterns by investigating the global distribution and temporal occurrences of taxa spanning the entire clade. Results suggest patterns of diversity unique to previously established trends that predominantly centered on a limited number of echinoderm groups. To examine the connection between climate change and Paleozoic echinoderm biodiversity (i.e., diversification, extinction, and origination rates), we collated stable oxygen isotope data from the primary literature spanning the Ordovician to the Devonian. We compiled these data to create a continuous curve of δO values during the described period to better evaluate in tandem with echinoderm diversity metrics. When the δO curve is compared to the echinoderm biodiversity patterns, we found that cooling periods coincide with increased extinction rates, corroborating prior hypotheses that major end-Ordovician cooling triggered changes in echinoderm biodiversity at a global level and further identifying a potential pattern in abiotic drivers in echinoderm biodiversity. The connection between Paleozoic echinoderm biodiversity and other abiotic factors will be further studied by comparing these recovered patterns with paleolatitudinal distributions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    