skip to main content

Title: Thermochemical studies of reactions of Re + with SO 2 using guided ion beam experiments and theory
The kinetic energy dependent reactions of Re + with SO 2 were studied with guided ion beam tandem mass spectrometry. ReO + , ReO 2 + , and OReS + species were observed as products, all in endothermic reactions. Modeling of the kinetic energy dependent cross sections yields 0 K bond dissociation energies (BDEs, in eV) of 4.78 ± 0.06 (Re + –O), 5.75 ± 0.02 (Re + –O 2 ), and 4.35 ± 0.14 (Re + –SO). The latter two values can be combined with other information to derive the additional values 6.05 ± 0.05 (ORe + –O) and 4.89 ± 0.19 (ORe + –S). BDEs of ReO + and ReO 2 + agree with literature values whereas the values for OReS + are the first measurements. The former result is obtained even though formation of ground state ReO + is spin-forbidden. Quantum mechanical calculations at the B3LYP level of theory with a def2-TZVPPD basis set yield results that agree reasonably well with experimental values. Additional calculations at the BP86 and CCSD(T) levels of theory using def2-QZVPPD and aug-cc-pVxZ (x = T, Q, and 5) basis sets were performed to compare thermochemistry with experiment to determine that ReO 2 + rather than the isobaric ReS + is formed. Product ground states are 3 Δ 3 (ReO + ), 3 B 1 (OReO + ), 5 Π −1 (ReS + ), and 3 A′′(OReS + ) after including empirical spin–orbit corrections, which means that formation of ground state products is spin-forbidden for all three product channels. The potential energy surfaces for the ReSO 2 + system were also explored at the B3LYP/def2-TZVPPD level and exhibited no barriers in excess of the endothermicities for all products. BDEs for rhenium oxide and sulfide diatomics and triatomics are compared and discussed. The present result for formation of ReO + is compared to that for formation of ReO + in the reactions of Re + + O 2 and CO, where the former system exhibited interesting dual cross section features. Results are consistent with the hypothesis that the distinction of in-plane and out-of-plane C S symmetry in the triatomic systems might be the explanation for the two endothermic features observed in the Re + + O 2 reaction.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Page Range / eLocation ID:
3191 to 3203
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The kinetic energy dependences of the reactions of Pt + ( 2 D 5/2 ) with SO 2 were studied using a guided ion beam tandem mass spectrometer and theory. The observed cationic products are PtO + and PtSO + , with small amounts of PtS + , all formed in endothermic reactions. Modeling the kinetic energy dependent product cross sections allows determination of the product bond dissociation energies (BDEs): D 0 (Pt + –O) = 3.14 ± 0.11 eV, D 0 (Pt + –S) = 3.68 ± 0.31 eV, and D 0 (Pt + –SO) = 3.03 ± 0.12 eV. The oxide BDE agrees well with more precise literature values, whereas the latter two results are the first such measurements. Quantum mechanical calculations were performed for PtO + , PtS + , PtO 2 + , and PtSO + at the B3LYP and coupled-cluster with single, double, and perturbative triple [CCSD(T)] levels of theory using the def2-XZVPPD (X = T, Q) and aug-cc-pVXZ (X = T, Q, 5) basis sets and complete basis set extrapolations. These theoretical BDEs agree well with the experimental values. After including empirical spin–orbit corrections, the product ground states are determined as PtO + ( 4 Σ 3/2 ), PtS + ( 4 Σ 3/2 ), PtO 2 + ( 2 Σ g + ), and PtSO + ( 2 A′). Potential energy profiles including intermediates and transition states for each reaction were also calculated at the B3LYP/def2-TZVPPD level. Periodic trends in the thermochemistry of the group 9 metal chalcogenide cations are compared, and the formation of PtO + from the Pt + + SO 2 reaction is compared with those from the Pt + + O 2 , CO 2 , CO, and NO reactions. 
    more » « less
  2. Methane and cyclopropane (c-C3H6) were reacted with Ru+ ions in a room temperature ion trap and the resulting products were identified using a combination of mass spectrometry, IR action spectroscopy, and density functional theory calculations. In the reaction with methane, no products with odd numbers of carbon atoms were located, whereas significant amounts of products with even numbers of carbon atoms were observed. We identified [Ru,2C,4H]+ as the Ru+ ion with an ethene ligand attached, and [Ru,4C,6H]+ as a Ru(η4-cis-1,3-butadiene)+ complex. The barrier toward formation of Ru(C2H4)+ + 2 H2 was calculated at the B3LYP/def2-TZVPPD level to be 0.80 eV above the energy of the ground state Ru+ (4F) + 2 CH4 reactants. In the reaction of c-C3H6 with Ru+, we identified the dehydrogenation product [Ru,3C,4H]+ as Ru(η2-propyne)+, [Ru,2C,2H]+ as Ru+ with an ethyne ligand, and [Ru,5C,5H]+ as Ru(η5-c-C5H5)+ having a cyclopentadienyl ligand. 
    more » « less
  3. Abstract

    The formation of two-electron chemical bonds requires the alignment of spins. Hence, it is well established for gas-phase reactions that changing a molecule’s electronic spin state can dramatically alter its reactivity. For reactions occurring at surfaces, which are of great interest during, among other processes, heterogeneous catalysis, there is an absence of definitive state-to-state experiments capable of observing spin conservation and therefore the role of electronic spin in surface chemistry remains controversial. Here we use an incoming/outgoing correlation ion imaging technique to perform scattering experiments for O(3P) and O(1D) atoms colliding with a graphite surface, in which the initial spin-state distribution is controlled and the final spin states determined. We demonstrate that O(1D) is more reactive with graphite than O(3P). We also identify electronically nonadiabatic pathways whereby incident O(1D) is quenched to O(3P), which departs from the surface. With the help of molecular dynamics simulations carried out on high-dimensional machine-learning-assisted first-principles potential energy surfaces, we obtain a mechanistic understanding for this system: spin-forbidden transitions do occur, but with low probabilities.

    more » « less
  4. Reactions of [Re(NPhF)Cl 3 (PPh 3 ) 2 ] ({NPhF} 2− = p -fluorophenylimide) with a variety of alkyl and aryl isocyanides have been studied. Different reactivity patterns and products have been obtained depending on the steric and electronic properties of the individual ligands. This involves the formation of 1 : 1 and 1 : 2 exchange products of Re( v ) with the general formulae mer -[Re(NPhF)Cl 3 (PPh 3 )(isocyanide)] and cis - or trans -[Re(NPhF)Cl 3 (isocyanide) 2 ]. The stability of the obtained products is correlated with the substitution pattern of the isocyanide ligands. The products have been studied by single-crystal X-ray diffraction and spectroscopic methods, including IR and multinuclear NMR spectroscopy as well as mass spectrometry. The use of partially fluorinated starting materials and ligands allows the modulation of the solubilities of the starting materials and the products as well as the monitoring of the reactions by means of 19 F NMR. The attachment of the CF 3 or F substituent on the isocyanides gives control over the steric bulk and the electronic properties of the ligands and, thus, their reactivity. 
    more » « less
  5. Abstract

    We report new measurements of branching fractions for 20 UV and blue lines in the spectrum of neutral silicon (Sii) originating in the 3s23p4s3Po1,2,1Po1, and 3s3p31Do1,2upper levels. Transitions studied include both strong, nearly pure LS multiplets as well as very weak spin-forbidden transitions connected to these upper levels. We also report a new branching fraction measurement of the4P1/22Po1/2,3/2intercombination lines in the spectrum of singly ionized silicon (Siii). The weak spin-forbidden lines of Siiand Siiiprovide a stringent test on recent theoretical calculations, to which we make comparison. The branching fractions from this study are combined with previously reported radiative lifetimes to yield transition probabilities and log(gf) values for these lines. We apply these new measurements to abundance determinations in five metal-poor stars.

    more » « less