skip to main content


Title: Tuning the melting point of selected ionic liquids through adjustment of the cation's dipole moment
In previous work with thermally robust salts [Cassity et al., Phys. Chem. Chem. Phys. , 2017, 19 , 31560] it was noted that an increase in the dipole moment of the cation generally led to a decrease in the melting point. Molecular dynamics simulations of the liquid state revealed that an increased dipole moment reduces cation–cation repulsions through dipole–dipole alignment. This was believed to reduce the liquid phase enthalpy, which would tend to lower the melting point of the IL. In this work we further test this principle by replacing hydrogen atoms with fluorine atoms at selected positions within the cation. This allows us to alter the electrostatics of the cation without substantially affecting the sterics. Furthermore, the strength of the dipole moment can be controlled by choosing different positions within the cation for replacement. We studied variants of four different parent cations paired with bistriflimide and determined their melting points, and enthalpies and entropies of fusion through DSC experiments. The decreases in the melting point were determined to be enthalpically driven. We found that the dipole moment of the cation, as determined by quantum chemical calculations, is inversely correlated with the melting point of the given compound. Molecular dynamics simulations of the crystalline and solid states of two isomers showed differences in their enthalpies of fusion that closely matched those seen experimentally. Moreover, this reduction in the enthalpy of fusion was determined to be caused by an increase in the enthalpy of the crystalline state. We provide evidence that dipole–dipole interactions between cations leads to the formation of cationic domains in the crystalline state. These cationic associations partially block favourable cation–anion interactions, which are recovered upon melting. If, however, the dipole–dipole interactions between cations is too strong they have a tendency to form glasses. This study provides a design rule for lowering the melting point of structurally similar ILs by altering their dipole moment.  more » « less
Award ID(s):
1800122
NSF-PAR ID:
10180408
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
22
Issue:
21
ISSN:
1463-9076
Page Range / eLocation ID:
12301 to 12311
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The exact expressions for the dipole, quadrupole, and octupoles of a collection ofNpoint charges involve summations of corresponding tensors over theNsites weighted by their charge magnitudes. When the point charges are atoms (in a molecule) theN‐site formula is an approximation, and one must integrate over the electron density to recover the exact multipoles. In the present work we revisit theN(N + 1)/2‐site point charge density model of Hall (Chem. Phys. Lett.6, 501, 1973) for the purpose of fitting ab initio derived multipole moment hypersurfaces using permutationally invariant polynomials (PIP). We examine new approaches in PIP‐fitting procedures for the dipole, quadrupole, octupole moments, and polarizability tensor surfaces (DMS, QMS, OMS and PTS, respectively) for a non‐polar CCl4and a polar CHCl3and show that compared to the primitiveN‐site model theN(N + 1)/2‐site model appreciably improves the relative RMSE of the DMS and does much more substantially so, by an order of magnitude, for the corresponding ones of QMS and OMS. Training datasets are obtained by sampling potential energies up to 18 000 cm−1above the global minima, generated by molecular dynamics simulations at the DFT B3LYP/aug‐cc‐pVDZ level of theory.

     
    more » « less
  2. Ionic liquids (ILs) are gaining attention as protein stabilizers and refolding additives. However, varying degrees of success with this approach motivates the need to better understand fundamental IL-protein interactions. A combination of experiment and simulation is used to investigate the thermal unfolding of lysozyme in the presence of two imidazolium-based ILs (1-ethyl-3-methylimidazolium ethylsulfate, [EMIM][EtSO 4 ] and 1-ethyl-3-methylimidazolium diethylphosphate, [EMIM][Et 2 PO 4 ]). Both ILs reduce lysozyme melting temperature Tm , but more gradually than strong denaturants. [EMIM][Et 2 PO 4 ] lowers lysozyme Tm more readily than [EMIM][EtSO 4 ], as well as requiring less energy to unfold the protein, as determined by the calorimetric enthalpy ΔH. Intrinsic fluorescence measurements indicate that both ILs bind to tryptophan residues in a dynamic mode, and furthermore, molecular dynamics simulations show a high density of [EMIM] + near lysozyme’s Trp62 residue. For both ILs approximately half of the [EMIM] + cations near Trp62 show perfect alignment of their respective rings. The [EMIM] + cations, having a "local" effect in binding to tryptophan,likely perturb a critically important Arg-Trp-Arg bridge through favorable π − π and cation-π interactions. Simulations show that the anions, [EtSO 4 ] - and [Et 2 PO 4 ] - , interact in a "global" manner with lysozyme, due to this protein’s strong net positive charge. The anions also determine the local distribution of ions surrounding the protein. [Et 2 PO 4 ] - is found to have a closer first coordination shell around the protein and stronger Coulomb interactions with lysozyme than [EtSO 4 ] - , which could explain why the former anion is more destabilizing. Patching of ILs to the protein surface is also observed, suggesting there is no universal IL solvent for proteins, and highlighting the complexity of the IL-protein environment. 
    more » « less
  3. In contrast to their spontaneous deprotonation in aqueous solution, reactions of guanine and guanosine radical cations with water in the gas phase are exclusively initiated by hydration of the radical cations as reported in recent work (Y. Sun et al. , Phys. Chem. Chem. Phys. , 2018, 20 , 27510). As gas-phase hydration reactions closely mimic the actual scenario for guanine radical cations in double-stranded DNA, exploration of subsequent reactions within their water complexes can provide an insight into the resulting oxidative damage to nucleosides. Herein guided-ion beam mass spectrometry experiment and direct dynamics trajectory simulations were carried out to examine prototype complexes of the 9-methylguanine radical cation with one and two water ligands ( i.e. , 9MG˙ + ·(H 2 O) 1–2 ) in the gas phase, wherein the complexes were activated by collisional activation in the experiment and by thermal excitation at high temperatures in the simulations. Guided by mass spectroscopic measurements, trajectory results and reaction potential energy surface, three reaction pathways were identified. The first two reaction pathways start with H-atom abstraction from water by the O6 and N7 atoms in 9MG˙ + and are referred to as HA O6 and HA N7 , respectively. The primary products of HA O6 and HA N7 reactions, including [9MG + H O6 ] + /[9MG + H N7 ] + and ˙OH, react further to either form [8OH-9MG + H O6 ]˙ + and [8OH-9MG + H N7 ]˙ + via C8-hydroxylation or form radical cations of 6- enol -guanine (6- enol -G˙ + ) and 7H-guanine (7HG˙ + ) via S N 2-type methanol elimination. The third reaction pathway corresponds to the formation of 8OH-9MG + by H elimination from the complex, referred to as HE. Among these product channels, [8OH-9MG + H N7 ]˙ + has the most favorable formation probability, especially in the presence of additional water molecules. This product may serve as a preceding structure to the 8-oxo-7,8-dihydroguanine lesion in DNA and has implications for health effects of radiation exposure and radiation therapy. 
    more » « less
  4. Photoelectron angular distributions (PADs) in SO − photodetachment using linearly polarized 355 nm (3.49 eV), 532 nm (2.33 eV), and 611 nm (2.03 eV) light were investigated via photoelectron imaging spectroscopy. The measurements at 532 and 611 nm access the X 3 Σ − and a 1 Δ electronic states of SO, whereas the measurements at 355 nm also access the b 1 Σ + state. In aggregate, the photoelectron anisotropy parameter values follow the general trend with respect to electron kinetic energy (eKE) expected for π*-orbital photodetachment. The trend is similar to O 2 − , but the minimum of the SO − curve is shifted to smaller eKE. This shift is mainly attributed to the exit-channel interactions of the departing electron with the dipole moment of the neutral SO core, rather than the differing shapes of the SO − and O 2 − molecular orbitals. Of the several ab initio models considered, two approaches yield good agreement with the experiment: one representing the departing electron as a superposition of eigenfunctions of a point dipole-field Hamiltonian, and another describing the outgoing electron in terms of Coulomb waves originating from two separated charge centers, with a partial positive charge on the sulfur and an equal negative charge on the oxygen. These fundamentally related approaches support the conclusion that electron–dipole interactions in the exit channel of SO − photodetachment play an important role in shaping the PADs. While a similar conclusion was previously reached for photodetachment from σ orbitals of CN − (Hart, Lyle, Spellberg, Krylov, Mabbs, J. Phys. Chem. Lett. , 2021, 12 , 10086–10092), the present work includes the first extension of the dipole-field model to detachment from π* orbitals. 
    more » « less
  5. null (Ed.)
    Saccharides comprise a significant mass fraction of organic carbon in sea spray aerosol (SSA), but the mechanisms through which saccharides are transferred from seawater to the ocean surface and eventually into SSA are unclear. It is hypothesized that saccharides cooperatively adsorb to other insoluble organic matter at the air/sea interface, known as the sea surface microlayer (SSML). Using a combination of surface-sensitive infrared reflection-absorption spectroscopy and all-atom molecular dynamics simulations, we demonstrate that the marine-relevant, anionic polysaccharide alginate co-adsorbs to an insoluble palmitic acid monolayer via divalent cationic bridging interactions. Ca2+ induces the greatest extent of alginate co-adsorption to the monolayer, evidenced by the ~30% increase in surface coverage, whereas Mg2+ only facilitates one-third the extent of co-adsorption at seawater-relevant cation concentrations due to its strong hydration propensity. Na+ cations alone do not facilitate alginate co-adsorption, and palmitic acid protonation hinders the formation of divalent cationic bridges between the palmitate and alginate carboxylate moieties. Alginate co-adsorption is largely confined to the interfacial region beneath the monolayer headgroups, so surface pressure, and thus monolayer surface coverage, only changes the amount of alginate co-adsorption by less than 5%. Our results provide physical and molecular characterization of a potentially significant polysaccharide enrichment mechanism within the SSML. 
    more » « less