skip to main content

This content will become publicly available on February 23, 2024

Title: Revisiting the N ( N  + 1)/2‐site s ‐type Gaussian charge model for permutationally invariant polynomial fitting of global molecular tensor surfaces

The exact expressions for the dipole, quadrupole, and octupoles of a collection ofNpoint charges involve summations of corresponding tensors over theNsites weighted by their charge magnitudes. When the point charges are atoms (in a molecule) theN‐site formula is an approximation, and one must integrate over the electron density to recover the exact multipoles. In the present work we revisit theN(N + 1)/2‐site point charge density model of Hall (Chem. Phys. Lett.6, 501, 1973) for the purpose of fitting ab initio derived multipole moment hypersurfaces using permutationally invariant polynomials (PIP). We examine new approaches in PIP‐fitting procedures for the dipole, quadrupole, octupole moments, and polarizability tensor surfaces (DMS, QMS, OMS and PTS, respectively) for a non‐polar CCl4and a polar CHCl3and show that compared to the primitiveN‐site model theN(N + 1)/2‐site model appreciably improves the relative RMSE of the DMS and does much more substantially so, by an order of magnitude, for the corresponding ones of QMS and OMS. Training datasets are obtained by sampling potential energies up to 18 000 cm−1above the global minima, generated by molecular dynamics simulations at the DFT B3LYP/aug‐cc‐pVDZ level of theory.

 ;  ;  
Publication Date:
Journal Name:
International Journal of Quantum Chemistry
Wiley Blackwell (John Wiley & Sons)
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A density functional theoretical (DFT) study is presented, implicating a1O2oxidation process to reach a dihydrobenzofuran from the reaction of the natural homoallylic alcohol, glycocitrine. Our results predict an interconversion between glycocitrine and aniso‐hydroperoxide intermediate [R(H)O+O] that provides a key path in the chemistry which then follows. Formations of allylic hydroperoxides are unlikely from a1O2‘ene’ reaction. Instead, the dihydrobenzofuran arises by1O2oxidation facilitated by a 16° curvature of the glycocitrine ring imposed by a pyramidalN‐methyl group. This curvature facilitates the formation of theiso‐hydroperoxide, which is analogous to theisospecies CH2I+Iand CHI2+Iformed by UV photolysis of CH2I2and CHI3. Theiso‐hydroperoxide is also structurally reminiscent of carbonyl oxides (R2C=O+O) formed in the reaction of carbenes and oxygen. Our DFT results point to intermolecular process, in which theiso‐hydroperoxide's fate relates to O‐transfer and H2O dehydration reactions for new insight into the biosynthesis of dihydrobenzofuran natural products.

  2. Abstract

    Mono‐ andbis‐decylated lumazines have been synthesized and characterized. Namely,mono‐decyl chain [1‐decylpteridine‐2,4(1,3H)‐dione]6aandbis‐decyl chain [1,3‐didecylpteridine‐2,4(1,3H)‐dione]7aconjugates were synthesized by nucleophilic substitution (SN2) reactions of lumazine with 1‐iododecane inN,N‐dimethylformamide (DMF) solvent. Decyl chain coupling occurred at theN1site and then theN3site in a sequential manner, without DMF condensation. Molecular orbital (MO) calculations show ap‐orbital atN1but notN3, which along with a nucleophilicity parameter (N) analysis predict alkylation atN1in lumazine. Only after the alkylation atN1in6a, does ap‐orbital onN3emerge thereby reacting with a second equivalent of 1‐iododecane to reach the dialkylated product7a. Data from NMR (1H,13C, HSQC, HMBC), HPLC, TLC, UV‐vis, fluorescence and density functional theory (DFT) provide evidence for the existence ofmono‐decyl chain6aandbis‐decyl chain7a. These results differ to pterinO‐alkylations (kinetic control), whereN‐alkylation of lumazine is preferred and then to dialkylation (thermodynamic control), with an avoidance of DMF solvent condensation. These findings add to the list of alkylation strategies for increasing sensitizer lipophilicity for use in photodynamic therapy.

  3. Abstract

    Accurate estimation of solvation free energy (SFE) lays the foundation for accurate prediction of binding free energy. The Poisson‐Boltzmann (PB) or generalized Born (GB) combined with surface area (SA) continuum solvation method (PBSA and GBSA) have been widely used in SFE calculations because they can achieve good balance between accuracy and efficiency. However, the accuracy of these methods can be affected by several factors such as the charge models, polar and nonpolar SFE calculation methods and the atom radii used in the calculation. In this work, the performance of the ABCG2 (AM1‐BCC‐GAFF2) charge model as well as other two charge models, that is, RESP (Restrained Electrostatic Potential) and AM1‐BCC (Austin Model 1‐bond charge corrections), on the SFE prediction of 544 small molecules in water by PBSA/GBSA was evaluated. In order to improve the performance of the PBSA prediction based on the ABCG2 charge, we further explored the influence of atom radii on the prediction accuracy and yielded a set of atom radius parameters for more accurate SFE prediction using PBSA based on the ABCG2/GAFF2 by reproducing the thermodynamic integration (TI) calculation results. The PB radius parameters of carbon, oxygen, sulfur, phosphorus, chloride, bromide and iodine, were adjusted. New atommore »types,on,oi,hn1,hn2,hn3, were introduced to further improve the fitting performance. Then, we tuned the parameters in the nonpolar SFE model using the experimental SFE data and the PB calculation results. By adopting the new radius parameters and new nonpolar SFE model, the root mean square error (RMSE) of the SFE calculation for the 544 molecules decreased from 2.38 to 1.05 kcal/mol. Finally, the new radius parameters were applied in the prediction of protein‐ligand binding free energies using the MM‐PBSA method. For the eight systems tested, we could observe higher correlation between the experiment data and calculation results and smaller prediction errors for the absolute binding free energies, demonstrating that our new radius parameters can improve the free energy calculation using the MM‐PBSA method.

    « less
  4. Abstract

    Single crystal microwires of a well‐studied organic semiconductor used in organic solar cells, namelyp‐DTS(FBTTh2)2, are prepared via a self‐assembly method in solution. The high level of intermolecular organization in the single crystals facilitates migration of charges, relative to solution‐processed films, and provides insight into the intrinsic charge transport properties ofp‐DTS(FBTTh2)2. Field‐effect transistors based on the microwires can achieve hole mobilities on the order of ≈1.8 cm2V−1s−1. Furthermore, these microwires show photoresponsive electrical characteristics and can act as photoswitches, with switch ratios over 1000. These experimental results are interpreted using theoretical simulations using an atomistic density functional theory approach. Based on the lattice organization, intermolecular couplings and reorganization energies are calculated, and hole mobilities for comparison with experimental measurements are further estimated. These results demonstrate a unique example of the optoelectronic applications ofp‐DTS(FBTTh2)2microwires.