skip to main content


Title: Revisiting the N ( N  + 1)/2‐site s ‐type Gaussian charge model for permutationally invariant polynomial fitting of global molecular tensor surfaces
Abstract

The exact expressions for the dipole, quadrupole, and octupoles of a collection ofNpoint charges involve summations of corresponding tensors over theNsites weighted by their charge magnitudes. When the point charges are atoms (in a molecule) theN‐site formula is an approximation, and one must integrate over the electron density to recover the exact multipoles. In the present work we revisit theN(N + 1)/2‐site point charge density model of Hall (Chem. Phys. Lett.6, 501, 1973) for the purpose of fitting ab initio derived multipole moment hypersurfaces using permutationally invariant polynomials (PIP). We examine new approaches in PIP‐fitting procedures for the dipole, quadrupole, octupole moments, and polarizability tensor surfaces (DMS, QMS, OMS and PTS, respectively) for a non‐polar CCl4and a polar CHCl3and show that compared to the primitiveN‐site model theN(N + 1)/2‐site model appreciably improves the relative RMSE of the DMS and does much more substantially so, by an order of magnitude, for the corresponding ones of QMS and OMS. Training datasets are obtained by sampling potential energies up to 18 000 cm−1above the global minima, generated by molecular dynamics simulations at the DFT B3LYP/aug‐cc‐pVDZ level of theory.

 
more » « less
Award ID(s):
1855583
NSF-PAR ID:
10419878
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal of Quantum Chemistry
Volume:
123
Issue:
11
ISSN:
0020-7608
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A density functional theoretical (DFT) study is presented, implicating a1O2oxidation process to reach a dihydrobenzofuran from the reaction of the natural homoallylic alcohol, glycocitrine. Our results predict an interconversion between glycocitrine and aniso‐hydroperoxide intermediate [R(H)O+O] that provides a key path in the chemistry which then follows. Formations of allylic hydroperoxides are unlikely from a1O2‘ene’ reaction. Instead, the dihydrobenzofuran arises by1O2oxidation facilitated by a 16° curvature of the glycocitrine ring imposed by a pyramidalN‐methyl group. This curvature facilitates the formation of theiso‐hydroperoxide, which is analogous to theisospecies CH2I+Iand CHI2+Iformed by UV photolysis of CH2I2and CHI3. Theiso‐hydroperoxide is also structurally reminiscent of carbonyl oxides (R2C=O+O) formed in the reaction of carbenes and oxygen. Our DFT results point to intermolecular process, in which theiso‐hydroperoxide's fate relates to O‐transfer and H2O dehydration reactions for new insight into the biosynthesis of dihydrobenzofuran natural products.

     
    more » « less
  2. Abstract

    Mono‐ andbis‐decylated lumazines have been synthesized and characterized. Namely,mono‐decyl chain [1‐decylpteridine‐2,4(1,3H)‐dione]6aandbis‐decyl chain [1,3‐didecylpteridine‐2,4(1,3H)‐dione]7aconjugates were synthesized by nucleophilic substitution (SN2) reactions of lumazine with 1‐iododecane inN,N‐dimethylformamide (DMF) solvent. Decyl chain coupling occurred at theN1site and then theN3site in a sequential manner, without DMF condensation. Molecular orbital (MO) calculations show ap‐orbital atN1but notN3, which along with a nucleophilicity parameter (N) analysis predict alkylation atN1in lumazine. Only after the alkylation atN1in6a, does ap‐orbital onN3emerge thereby reacting with a second equivalent of 1‐iododecane to reach the dialkylated product7a. Data from NMR (1H,13C, HSQC, HMBC), HPLC, TLC, UV‐vis, fluorescence and density functional theory (DFT) provide evidence for the existence ofmono‐decyl chain6aandbis‐decyl chain7a. These results differ to pterinO‐alkylations (kinetic control), whereN‐alkylation of lumazine is preferred and then to dialkylation (thermodynamic control), with an avoidance of DMF solvent condensation. These findings add to the list of alkylation strategies for increasing sensitizer lipophilicity for use in photodynamic therapy.

     
    more » « less
  3.  
    more » « less
  4. We describe the confining instabilities of a proposed quantum spin liquid underlying the pseudogap metal state of the hole-doped cuprates. The spin liquid can be described by a SU(2) gauge theory ofNf= 2 massless Dirac fermions carrying fundamental gauge charges—this is the low-energy theory of a mean-field state of fermionic spinons moving on the square lattice withπ-flux per plaquette in the ℤ2center of SU(2). This theory has an emergent SO(5)fglobal symmetry and is presumed to confine at low energies to the Néel state. At nonzero doping (or smaller Hubbard repulsionUat half-filling), we argue that confinement occurs via the Higgs condensation of bosonic chargons carrying fundamental SU(2) gauge charges also moving inπ2-flux. At half-filling, the low-energy theory of the Higgs sector hasNb= 2 relativistic bosons with a possible emergent SO(5)bglobal symmetry describing rotations between ad-wave superconductor, period-2 charge stripes, and the time-reversal breaking “d-density wave” state. We propose a conformal SU(2) gauge theory withNf= 2 fundamental fermions,Nb= 2 fundamental bosons, and a SO(5)f×SO(5)bglobal symmetry, which describes a deconfined quantum critical point between a confining state which breaks SO(5)fand a confining state which breaks SO(5)b. The pattern of symmetry breaking within both SO(5)s is determined by terms likely irrelevant at the critical point, which can be chosen to obtain a transition between Néel order andd-wave superconductivity. A similar theory applies at nonzero doping and largeU, with longer-range couplings of the chargons leading to charge order with longer periods.

     
    more » « less
  5. Abstract

    Accurate estimation of solvation free energy (SFE) lays the foundation for accurate prediction of binding free energy. The Poisson‐Boltzmann (PB) or generalized Born (GB) combined with surface area (SA) continuum solvation method (PBSA and GBSA) have been widely used in SFE calculations because they can achieve good balance between accuracy and efficiency. However, the accuracy of these methods can be affected by several factors such as the charge models, polar and nonpolar SFE calculation methods and the atom radii used in the calculation. In this work, the performance of the ABCG2 (AM1‐BCC‐GAFF2) charge model as well as other two charge models, that is, RESP (Restrained Electrostatic Potential) and AM1‐BCC (Austin Model 1‐bond charge corrections), on the SFE prediction of 544 small molecules in water by PBSA/GBSA was evaluated. In order to improve the performance of the PBSA prediction based on the ABCG2 charge, we further explored the influence of atom radii on the prediction accuracy and yielded a set of atom radius parameters for more accurate SFE prediction using PBSA based on the ABCG2/GAFF2 by reproducing the thermodynamic integration (TI) calculation results. The PB radius parameters of carbon, oxygen, sulfur, phosphorus, chloride, bromide and iodine, were adjusted. New atom types,on,oi,hn1,hn2,hn3, were introduced to further improve the fitting performance. Then, we tuned the parameters in the nonpolar SFE model using the experimental SFE data and the PB calculation results. By adopting the new radius parameters and new nonpolar SFE model, the root mean square error (RMSE) of the SFE calculation for the 544 molecules decreased from 2.38 to 1.05 kcal/mol. Finally, the new radius parameters were applied in the prediction of protein‐ligand binding free energies using the MM‐PBSA method. For the eight systems tested, we could observe higher correlation between the experiment data and calculation results and smaller prediction errors for the absolute binding free energies, demonstrating that our new radius parameters can improve the free energy calculation using the MM‐PBSA method.

     
    more » « less