Abstract Background and Aims The acquisitive–conservative axis of plant ecological strategies results in a pattern of leaf trait covariation that captures the balance between leaf construction costs and plant growth potential. Studies evaluating trait covariation within species are scarcer, and have mostly dealt with variation in response to environmental gradients. Little work has been published on intraspecific patterns of leaf trait covariation in the absence of strong environmental variation. Methods We analysed covariation of four leaf functional traits [specific leaf area (SLA) leaf dry matter content (LDMC), force to tear (Ft) and leaf nitrogen content (Nm)] in six Poaceae and four Fabaceae species common in the dry Chaco forest of Central Argentina, growing in the field and in a common garden. We compared intraspecific covariation patterns (slopes, correlation and effect size) of leaf functional traits with global interspecific covariation patterns. Additionally, we checked for possible climatic and edaphic factors that could affect the intraspecific covariation pattern. Key Results We found negative correlations for the LDMC–SLA, Ft–SLA, LDMC–Nm and Ft–Nm trait pairs. This intraspecific covariation pattern found both in the field and in the common garden and not explained by climatic or edaphic variation in the field follows the expected acquisitive–conservative axis. At the same time, we found quantitative differences in slopes among different species, and between these intraspecific patterns and the interspecific ones. Many of these differences seem to be idiosyncratic, but some appear consistent among species (e.g. all the intraspecific LDMC–SLA and LDMC–Nm slopes tend to be shallower than the global pattern). Conclusions Our study indicates that the acquisitive–conservative leaf functional trait covariation pattern occurs at the intraspecific level even in the absence of relevant environmental variation in the field. This suggests a high degree of variation–covariation in leaf functional traits not driven by environmental variables.
more »
« less
Aridity drives coordinated trait shifts but not decreased trait variance across the geographic range of eight Australian trees
Large intraspecific functional trait variation strongly impacts many aspects of communities and ecosystems, and is the medium upon which evolution works. Yet intraspecific trait variation is inconsistent and hard to predict across traits, species, and locations. We measured within-species variation in leaf mass per area (LMA), leaf dry matter content (LDMC), branch wood density (WD), and allocation to stem area vs. leaf area in branches (branch Huber value, HV) across the aridity range of seven Australian eucalypts and a cooccuring Acacia species to explore how traits and their variances change with aridity. Within-species, we found consistent increases in LMA, LDMC and WD, and HV with increasing aridity, resulting in consistent trait coordination across leaves and branches. However, this coordination only emerged across sites with large climate differences. Unlike trait means, patterns of trait variance with aridity were mixed across populations and species. Only LDMC showed constrained trait variation in more xeric species and drier populations that could indicate limits to plasticity or heritable trait variation. Our results highlight that climate can drive consistent within-species trait patterns, but that patterns might often be obscured by the complex nature of morphological traits, sampling incomplete species ranges, or sampling confounded stress gradients.
more »
« less
- Award ID(s):
- 1711243
- PAR ID:
- 10180409
- Date Published:
- Journal Name:
- New Phytologist
- ISSN:
- 0028-646X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Plant traits are important for understanding community assembly and ecosystem processes, yet our understanding of intraspecific trait variation (ITV) is limited. This gap in our knowledge is partially because collecting trait data across a species' entire range is impractical, let alone across the ranges of multiple species within a plant family. Using machine learning techniques to predict spatial ITV is an attractive and cost‐effective alternative to sampling across a species range, although this has not been applied beyond regional scales. We compiled a trait database of over 1000 grass species (family: Poaceae), encompassing six key functional traits: specific leaf area (SLA), leaf dry matter content (LDMC), plant height, leaf area, leaf nitrogen (Nmass) and leaf phosphorus content (Pmass). Using a random forest machine learning approach, we predicted local trait values within species' ranges considering climate, soil type, phylogeny, lifespan, and photosynthetic pathway as influential factors. An iterative random forest modeling technique incorporated correlations between traits, resulting in improved model performance (observed versus predicted R range of 0.72–0.91). Our models also highlight the importance of climate in predicting trait variation. For a subset of species (n = 860), we projected trait predictions across their known distribution, informed by expert maps from Royal Botanic Gardens, Kew, to create global maps of ITV for grasses. Such maps have the potential to inform conservation efforts and predictions of grazing and fire dynamics in grasslands worldwide. Overall, our research demonstrates the value and ecological applications of predicting plant traits.more » « less
-
Plant traits are useful for predicting how species may respond to environmental change and/or influence ecosystem properties. Understanding the extent to which traits vary within species and across climatic gradients is particularly important for understanding how species may respond to climate change. We explored whether climate drives spatial patterns of intraspecific trait variation for three traits (specific leaf area (SLA), plant height, and leaf nitrogen content (Nmass)) across 122 grass species (family: Poaceae) with a combined distribution across six continents. We tested the hypothesis that the sensitivity (i.e. slope) of intraspecific trait responses to climate across space would be related to the species' typical form and function (e.g. leaf economics, stature and lifespan). We observed both positive and negative intraspecific trait responses to climate with the distribution of slope coefficients across species straddling zero for precipitation, temperature and climate seasonality. As hypothesized, variation in slope coefficients across species was partially explained by leaf economics and lifespan. For example, acquisitive species with nitrogen-rich leaves grew taller and produced leaves with higher SLA in warmer regions compared to species with low Nmass. Compared to perennials, annual grasses invested in leaves with higher SLA yet decreased height and Nmass in regions with high precipitation seasonality (PS). Thus, while the influence of climate on trait expression may at first appear idiosyncratic, variation in trait–climate slope coefficients is at least partially explained by the species' typical form and function. Overall, our results suggest that a species' mean location along one axis of trait variation (e.g. leaf economics) could influence how traits along a separate axis of variation (e.g. plant size) respond to spatial variation in climate.more » « less
-
Henn, J (Ed.)Abstract Intraspecific trait variation can influence plant performance in different environments and may thereby determine the ability of individual plants to respond to climate change. However, our understanding of its patterns and environmental drivers across different spatial scales is incomplete, especially in understudied regions like the Arctic.To fill this knowledge gap, we examined above‐ground and below‐ground traits from three shrub taxa expanding across the tundra biome and evaluated their relationships with multiple microenvironmental and macroclimatic factors. The traits reflected plant size and structure (plant height, leaf area and root to shoot ratio), leaf economics (specific leaf area, nitrogen content), and root economics and collaboration with mycorrhizal fungi (specific root length, root tissue density, nitrogen content, and ectomycorrhizal colonisation intensity). We also measured leaf and root δ15N and leaf δ13C to characterise nitrogen source and acquisition pathways and plant water stress. Traits were measured in replicated plots (N = 135) varying in soil microclimate, thaw depth and organic layer thickness established across five sites spanning a macroclimate gradient in northern Alaska. This hierarchical design allowed us to disentangle the independent and combined effects of fine‐scale and broad‐scale factors on intraspecific trait variation.We found substantial intraspecific variation at fine spatial scales for most traits and less variation along the macroclimate gradient and between shrub taxa. Consistent with these patterns, microenvironmental factors, mainly soil moisture and thaw depth, interacted with macroclimate, mainly climatic water deficit, to structure size‐structural and leaf trait variation. In contrast, most root traits responded additively to thaw depth and macroclimate.Synthesis. Our results demonstrate that above‐ground and below‐ground tundra shrub traits respond differently to microenvironmental and macroclimatic variation. These differing responses contribute to substantial trait variation at fine spatial scales and may decouple above‐ground and below‐ground trait responses to climate change.more » « less
-
Plant functional traits are vital tools in ecological restoration and biodiversity conservation. While functional traits and functional diversity are increasingly being used to inform restoration efforts, challenges remain in the characterization of trait variation in many systems, including within‐species. Likewise, understanding axes of trait variation describing trade‐offs in plant function is important for trait‐based restoration frameworks, yet the degree of coordination between above‐ground functional traits and their below‐ ground counterparts is often unknown. Here, we investigate intraspecific trait variation among five populations ofSchizachyrium scoparium(little bluestem), a species commonly used for restoration, from different habitat types across a gradient from southern Wisconsin to Northern Illinois. We asked (1) how regional populations ofS. scopariumdiffer in their functional traits, (2) how functional trait variation inS. scopariumis structured among and within populations, and (3) how above‐ and below‐ground functional traits ofS. scopariumcoordinate and describe axes of functional trade‐offs. We found that populations differed in multivariate trait space, but evidence for differences in individual traits among populations was mixed. Trait relationships with habitat types were idiosyncratic and often misaligned with expectations of plant economic spectra. Variation within populations was as high, or higher, than between populations across traits. We found evidence for weak coordination in several trait pairs, including two above‐ and below‐ground trait combinations, while others appeared to be uncoordinated. Our findings support previous research that trait differentiation can occur at multiple scales, both between and within populations. Extensive within‐population trait variability could be leveraged in trait‐based restoration frameworks targeting intraspecific functional diversity. The lack of strong signals of coordination between above‐ and below‐ground functional traits suggest that sourcing decisions meant to match below‐ground functional traits to recipient restored communities should rely on direct measurement of root traits associated with desired functions rather than above‐ground proxies.more » « less
An official website of the United States government

