Pincer-ligated catalysts that can undergo metal–ligand cooperativity (MLC), whereby H 2 is heterolytically cleaved (with proton transfer to the ligand and hydride transfer to the metal), have emerged as potent catalysts for the hydrogenation of CO 2 and organic carbonyls. Despite the plethora of systems developed that differ in metal/ligand identity, no studies establish how variation of the metal impacts the pertinent thermochemical properties of the catalyst, namely the equilibrium with H 2 , the hydricity of the resulting hydride, and the acidity of the ligand. These parameters can impact the kinetics, scope, and mechanism of catalysis and hence should be established. Herein, we describe how changing the metal (Co, Fe, Mn, Ru) and charge (neutral vs. anionic) impacts these parameters in a series of PNP-ligated catalysts (PNP = 2,6-bis[(di- tert -butylphosphino)methyl]pyridine). A linear correlation between hydricity and ligand p K a (when bound to the metal) is found, indicating that the two parameters are not independent of one another. This trend holds across four metals, two charges, and two different types of ligand (amine/amide and aromatization/de-aromatization). Moreover, the effect of ligand deprotonation on the hydricity of (PNP)(CO)(H)Fe–H and (PNP)(CO)(H)Ru–H is assessed. It is determined that deprotonation to give anionic hydride species enhances the hydricity by ∼16.5 kcal mol −1 across three metals. Taken together, this work suggests that the metal identity has little effect on the thermodynamic parameters for PNP-ligated systems that undergo MLC via (de)aromatization, whilst the effect of charge is significant; moreover, ion-pairing allows for further tuning of the hydricity values. The ramifications of these findings for catalysis are discussed.
more »
« less
Metal-Ligand Cooperativity in the Soluble Hydrogenase-1 from Pyrococcus Furiosus
Metal-ligand cooperativity is an essential feature of bioinorganic catalysis. The design principles of such cooperativity in metalloenzymes are underexplored, but are critical to understand for developing efficient catalysts designed with earth abundant metals for small molecule activation. The simple substrate requirements of reversible proton reduction by the [NiFe]-hydrogenases make them a model bioinorganic system. A highly conserved arginine residue (R355) directly above the exogenous ligand binding position of the [NiFe]-catalytic core is known to be essential for optimal function because mutation to a lysine results in lower catalytic rates. To expand on our studies of soluble hydrogenase-1 from Pyrococcus furiosus (Pf SH1), we investigated the role of R355 by site-directed-mutagenesis to a lysine (R355K) using infrared and electron paramagnetic resonance spectroscopic probes sensitive to active site redox and protonation events. It was found the mutation resulted in an altered ligand binding environment at the [NiFe] centre. A key observation was destabilization of the Nia3+-C state, which contains a bridging hydride. Instead the tautomeric Nia+-L states were observed. Overall, the results provided insight into complex metal-ligand cooperativity between the active site and protein scaffold that modulates the bridging hydride stability and the proton inventory, which should prove valuable to design principles for efficient bioinspired catalysts.
more »
« less
- PAR ID:
- 10180457
- Date Published:
- Journal Name:
- Chemical Science
- ISSN:
- 2041-6520
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Significant emphasis has been placed recently in engineering the catalytic environment beyond the active site for tuning the activity, selectivity, and stability of supported metal catalysts for targeted reactions. The environment around the active site in supported catalysts can be modified by introducing multi-dimensionality through alloying, encapsulation, and surface bound ligands. In this Review, we provide a summary of synthesis strategies that have enabled the design of multifunctionality and multidimensionality in heterogeneous supported catalysts. We specifically discuss alloys, encapsulated/inverted catalytic structures, and ligand capped metal nanoparticle systems. We highlight the effects on catalyst activity, selectivity and stability that arise from modifying the neighboring two-dimensional environment through alloying or three-dimensional environment through encapsulation with porous inorganic films or surface organic moieties. We conclude by providing a short perspective on the promises and remaining challenges associated with engineering the local environment around the active sites of supported heterogeneous catalysts.more » « less
-
null (Ed.)The mechanism of ethene hydrogenation to ethane on six dicationic 3d transition metal catalysts is investigated. Specifically, a combination of density functional theory (DFT), microkinetic modeling, and high throughput reactor experiments is used to interrogate the active sites and mechanisms for Mn@NU-1000, Fe@NU-1000, Co@NU-1000, Ni@NU-1000, Cu@NU-1000, and Zn@NU-1000 catalysts, where NU-1000 is a metal–organic framework (MOF) capable of supporting metal cation catalysts. The combination of experiments and simulations suggests that the reaction mechanism is influenced by the electron configuration and spin state of the metal cations as well as the amount of hydrogen that is adsorbed. Specifically, Ni@NU-1000, Cu@NU-1000, and Zn@NU-1000, which have more electrons in their d shells and operate in lower spin states, utilize a metal hydride active site and follow a mechanism where the metal cation binds with one or more species at all steps, whereas Mn@NU-1000, Fe@NU-1000, and Co@NU-1000, which have fewer electrons in their d shells and operate in higher spin states, utilize a bare metal cation active site and follow a mechanism where the number of species that bind to the metal cation is minimized. Instead of binding with the metal cation, catalytic species bind with oxo ligands from the NU-1000 support, as this enables more facile H 2 adsorption. The results reveal opportunities for tuning activity and selectivity for hydrogenation on metal cation catalysts by tuning the properties that influence hydrogen content and spin, including the metal cations themselves, the ligands, the binding environments and supports, and/or the gas phase partial pressures.more » « less
-
Abstract Carbon nanomaterials are promising metal‐free catalysts for energy conversion and storage, but the catalysts are usually developed via traditional trial‐and‐error methods. To rationally design and accelerate the search for the highly efficient catalysts, it is necessary to establish design principles for the carbon‐based catalysts. Here, theoretical analysis and material design of metal‐free carbon nanomaterials as efficient photo‐/electrocatalysts to facilitate the critical chemical reactions in clean and sustainable energy technologies are reviewed. These reactions include the oxygen reduction reaction in fuel cells, the oxygen evolution reaction in metal–air batteries, the iodine reduction reaction in dye‐sensitized solar cells, the hydrogen evolution reaction in water splitting, and the carbon dioxide reduction in artificial photosynthesis. Basic catalytic principles, computationally guided design approaches and intrinsic descriptors, catalytic material design strategies, and future directions are discussed for the rational design and synthesis of highly efficient carbon‐based catalysts for clean energy technologies.more » « less
-
Abstract The catalytic activity of human glutathione S‐transferase A1‐1 (hGSTA1‐1), a homodimeric detoxification enzyme, is dependent on the conformational dynamics of a key C‐terminal helix α9 in each monomer. However, the structural details of how the two monomers interact upon binding of substrates is not well understood and the structure of the ligand‐free state of the hGSTA1‐1 homodimer has not been resolved. Here, we used a combination of electron paramagnetic resonance (EPR) distance measurements and weighted ensemble (WE) simulations to characterize the conformational ensemble of the ligand‐free state at the atomic level. EPR measurements reveal a broad distance distribution between a pair of Cu(II) labels in the ligand‐free state that gradually shifts and narrows as a function of increasing ligand concentration. These shifts suggest changes in the relative positioning of the two α9 helices upon ligand binding. WE simulations generated unbiased pathways for the seconds‐timescale transition between alternate states of the enzyme, leading to the generation of atomically detailed structures of the ligand‐free state. Notably, the simulations provide direct observations of negative cooperativity between the monomers of hGSTA1‐1, which involve the mutually exclusive docking of α9 in each monomer as a lid over the active site. We identify key interactions between residues that lead to this negative cooperativity. Negative cooperativity may be essential for interaction of hGSTA1‐1 with a wide variety of toxic substrates and their subsequent neutralization. More broadly, this work demonstrates the power of integrating EPR distances with WE rare‐events sampling strategy to gain mechanistic information on protein function at the atomic level.more » « less
An official website of the United States government

