skip to main content


Title: Linear polarization of anisotropically excited x-ray lines from the n=2 complex in He-like Ar16+
High-resolution x-ray spectra were recorded at the National Institute of Standards and Technology electron beam ion trap (EBIT) using two Johann-type crystal spectrometers, with their dispersion planes oriented parallel and perpendicular to the beam direction. The linear polarizations of the 1s2−1s2l transitions in He-like argon ions were determined from the measured spectra at electron beam energies of 3.87 and 7.91 keV. The theoretical analysis was performed using detailed collisional-radiative modeling of the non-Maxwellian EBIT plasma with the NOMAD code modified to account for magnetic sublevel atomic kinetics. Effects influencing the polarizations of the observed 1s2−1s2l lines were investigated, including radiative cascades, the 1s2 1S0−1s2s 1S0 two-photon transition, and the charge exchange recombination of H-like argon ions. With these included, the measured polarizations of the resonance (1s2 1S0−1s2p 1P1), intercombination (1s2 1S0−1s2p 3P1), and forbidden lines (1s2 1S0−1s2s 3S1, 1s2 1S0−1s2p 3P2 ) were found to be in good agreement with the calculations.  more » « less
Award ID(s):
1806494
NSF-PAR ID:
10180566
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of physics
Volume:
53
ISSN:
0953-4075
Page Range / eLocation ID:
115701
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Accurate extreme ultraviolet spectra of open N -shell neodymium (Nd) ions were recorded at the electron beam ion trap facility of the National Institute of Standards and Technology. The measurements were performed for nominal electron beam energies in the range of 0.90 keV to 2.31 keV. The measured spectra were then compared with the spectra simulated by a collisional-radiative model utilizing atomic data produced with a fully relativistic atomic structure code. Consequently, 59 lines from Br-like to Ni-like Nd ions were unambiguously identified, most of which were newly assigned in this study. The wavelengths of 9 known lines from Ni-, Cu- and Zn-like Nd ions were in excellent agreement with previous measurements. 
    more » « less
  2. We present spectroscopic measurements and detailed theoretical analysis of inner-shell LMn and LNn (n  4) dielectronic resonances in highly charged M-shell ions of tungsten. The x-ray emission from W49+ through W64+ was recorded at the electron-beam ion trap (EBIT) facility at the National Institute of Standards and Technology with a high-purity Ge detector for electron-beam energies between 6.8 and 10.8 keV. The measured spectra clearly show the presence of strong resonance features as well as direct excitation spectral lines. The analysis of the recorded spectra with large-scale collisional-radiative modeling of the EBIT plasma allowed us to unambiguously identify numerous dielectronic resonances associated with excitations of the inner-shell 2s1/2, 2p1/2, and 2p3/2 electrons. 
    more » « less
  3. null (Ed.)
    Radiative double-electron capture (RDEC), in which two-electron capture is accompanied by simultaneousemission of a single photon, was investigated for fully stripped and one-electron projectiles colliding withgaseous and thin-foil targets. RDEC can be considered the inverse of double photoionization by a single photon.For the gaseous targets, measurements were done for 2.11 MeV/uF9+and F8+ions interacting with N2and Ne,while for the thin-foil target the measurements were done for 2.11 MeV/uF9+and F8+and 2.19 MeV/uO8+andO7+ions striking thin C targets. Reports on this work were already published separately in shorter accounts by LaMantiaet al.[Phys. Rev. Lett.124, 133401 (2020)for the gas targets andPhys.Rev.A102, 060801(R) (2020)forthe thin-foil targets]. The gas targets were studied under single-collision conditions, while the foil targets sufferedunavoidable multiple collisions. The measurements were carried out by detecting x-ray emission from the targetat 90◦to the beam direction in coincidence with outgoing ions undergoing double, single, and, in the caseof the foil targets, no charge change inside the target. Striking differences between the gaseous and foil targetswere found from these measurements, with RDEC for the gaseous targets occurring only in coincidence with q-2outgoing projectiles as expected, while RDEC for the foil targets was seen in each of the outgoing q-2, q-1, and nocharge-change states. The no charge-change result was totally unexpected. The cross sections for RDEC for thefully stripped ions on gas targets were found to be about six times larger than those for the one-electron projec-tiles. For the foil targets, the RDEC cross sections for the fully stripped and one-electron projectiles differ some-what from one another but not to the the extent they did for the gas targets. In this work the cross sections for allof the projectiles for the foil targets were adjusted due to the target contaminant background from potassium andcalcium atoms that existed in the spectra. Also, the cross sections for the incident one-electron projectiles weremodified due to a correction for the fraction of these ions that becomes fully stripped in passage through the foil.These differences are attributed to the effects of the multiple collisions that occur for the foil targets. The differ-ential cross sections at 90◦determined for each of the projectiles interacting with each of the targets are comparedwith each other and with the previous measurements. To the extent that the cross sections follow a sin2θdepen-dence, the total cross sections are compared with theoretical calculations [E. A. Mistonova and O. Yu. Andreev,Phys. Rev. A87, 034702 (2013)], for which the agreement is poor, with the measured cross section exceedingthe predicted ones by about an order of magnitude. Possible reasons for this discrepancy will be discussed. 
    more » « less
  4. Abstract

    The millimeter-wave spectrum of the SiP radical (X2Πi) has been measured in the laboratory for the first time using direct-absorption methods. SiP was created by the reaction of phosphorus vapor and SiH4in argon in an AC discharge. Fifteen rotational transitions (J+ 1 ←J) were measured for SiP in the Ω = 3/2 ladder in the frequency range 151–533 GHz, and rotational, lambda doubling, and phosphorus hyperfine constants determined. Based on the laboratory measurements, SiP was detected in the circumstellar shell of IRC+10216, using the Submillimeter Telescope and the 12 m antenna of the Arizona Radio Observatory at 1 mm and 2 mm, respectively. Eight transitions of SiP were searched: four were completely obscured by stronger features, two were uncontaminated (J= 13.5 → 12.5 and 16.5 → 15.5), and two were partially blended with other lines (J= 8.5 → 7.5 and 17.5 → 16.5). The SiP line profiles were broader than expected for IRC+10216, consistent with the hyperfine splitting. From non-LTE radiative transfer modeling, SiP was found to have a shell distribution with a radius ∼300R*, and an abundance, relative to H2, off∼ 2 × 10−9. From additional modeling, abundances of 7 × 10−9and 9 × 10−10were determined for CP and PN, respectively, both located in shells at 550–650R*. SiP may be formed from grain destruction, which liberates both phosphorus and silicon into the gas phase, and then is channeled into other P-bearing molecules such as PN and CP.

     
    more » « less
  5. Abstract Redshifted components of chromospheric emission lines in the hard X-ray impulsive phase of solar flares have recently been studied through their 30 s evolution with the high resolution of the Interface Region Imaging Spectrograph. Radiative-hydrodynamic flare models show that these redshifts are generally reproduced by electron-beam-generated chromospheric condensations. The models produce large ambient electron densities, and the pressure broadening of the hydrogen Balmer series should be readily detected in observations. To accurately interpret the upcoming spectral data of flares with the DKIST, we incorporate nonideal, nonadiabatic line-broadening profiles of hydrogen into the RADYN code. These improvements allow time-dependent predictions for the extreme Balmer line wing enhancements in solar flares. We study two chromospheric condensation models, which cover a range of electron-beam fluxes (1 − 5 × 10 11 erg s −1 cm −2 ) and ambient electron densities (1 − 60 × 10 13 cm −3 ) in the flare chromosphere. Both models produce broadening and redshift variations within 10 s of the onset of beam heating. In the chromospheric condensations, there is enhanced spectral broadening due to large optical depths at H α , H β , and H γ , while the much lower optical depth of the Balmer series H12−H16 provides a translucent window into the smaller electron densities in the beam-heated layers below the condensation. The wavelength ranges of typical DKIST/ViSP spectra of solar flares will be sufficient to test the predictions of extreme hydrogen wing broadening and accurately constrain large densities in chromospheric condensations. 
    more » « less