skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Changes of Magnetism in a Magnetic Insulator due to Proximity to a Topological Insulator
Award ID(s):
1641989 1915849
PAR ID:
10180671
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Physical Review Letters
Volume:
125
Issue:
1
ISSN:
0031-9007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Nitrogen vacancy (NV) centers, optically active atomic defects in diamond, have attracted tremendous interest for quantum sensing, network, and computing applications due to their excellent quantum coherence and remarkable versatility in a real, ambient environment. Taking advantage of these strengths, this paper reports on NV‐based local sensing of the electrically driven insulator‐to‐metal transition (IMT) in a proximal Mott insulator. The resistive switching properties of both pristine and ion‐irradiated VO2thin film devices are studied by performing optically detected NV electron spin resonance measurements. These measurements probe thelocaltemperature and magnetic field in electrically biased VO2devices, which are in agreement with theglobaltransport measurement results. In pristine devices, the electrically driven IMT proceeds through Joule heating up to the transition temperature while in ion‐irradiated devices, the transition occurs nonthermally, well below the transition temperature. The results provide direct evidence for nonthermal electrically induced IMT in a Mott insulator, highlighting the significant opportunities offered by NV quantum sensors in exploring nanoscale thermal and electrical behaviors in Mott materials. 
    more » « less
  2. null (Ed.)
  3. We show how, by changing the polarization value of ferroelectric domains, it is possible to tune the magnon conductivity in the ferromagnetic film layer of a multiferroic magnonic system. In particular, we suggest how to switch from a metal behavior (zero frequency gap and linear frequency-wavevector dispersion) to an insulator behavior (around 1 GHz frequency gap and parabolic dispersion). The ferroelectric film is prepared with a sequence of ferroelectric domains with a periodic variation of their polarization direction. Through inverse magnetostriction, they induce in the ferromagnetic layer a periodic magnetic anisotropy and a consequent sinusoidal magnetization. The amplitude of the sinusoidal magnetization can be varied by varying the induced magnetic anisotropy. This allows for a fine and reversible control over the curvature of the dispersion relations at the Brillouin zone boundary, as well as the width of the frequency gap. We suggest the extension of Dirac’s magnon picture to our system, finding interesting implications in terms of magnon mobility. This work expands the possible implementations of the voltage-controlled-bandgap meta-materials, marks the conditions for the occurrence of a magnonic metal behavior in a ferromagnetic film, and outlines how a same unpatterned film can be reversibly turned from a magnonic metal to a magnonic insulator. 
    more » « less