skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Chiral Spin-Wave Velocities Induced by All-Garnet Interfacial Dzyaloshinskii-Moriya Interaction in Ultrathin Yttrium Iron Garnet Films
Award ID(s):
1641989
PAR ID:
10180674
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Physical Review Letters
Volume:
124
Issue:
2
ISSN:
0031-9007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. Cerium-substituted yttrium iron garnet (Ce:YIG, Ce0.9Y2.1Fe5O12) was epitaxially grown on a (111)-oriented yttrium aluminum garnet (YAG) substrate using radio frequency ion beam sputtering. Magnetic hysteresis loops, transmissivity spectra, and magnetooptical (MO) responses, including Faraday rotation and Faraday ellipticity, were measured. The structural properties of the grown Ce:YIG were characterized using the x-ray rocking curve, reciprocal space map, pole figure, and x-ray reflectivity. X-ray photoelectron spectrometry revealed a dominant Ce3+ state in the grown Ce:YIG, but the transmission electron microscopy images showed columnar growth of Ce:YIG. This study demonstrates integration of epitaxial Ce:YIG on YAG, marking a significant step toward the fusion of MO garnets and laser crystals. 
    more » « less