skip to main content


Title: TrojDRL: Trojan Attacks on Deep Reinforcement Learning Agents. In Proc. 57th ACM/IEEE Design Automation Conference (DAC), 2020, March 2020
We present TrojDRL, a tool for exploring and evaluating backdoor attacks on deep reinforcement learning agents.TrojDRL exploits the sequential nature of deep reinforcement learning (DRL) and considers different gradations of threat models. We show that untargeted attacks on state-of-the-art actor-critic algorithms can circumvent existing defenses built on the assumption of backdoors being targeted. We evaluated TrojDRL on a broad set of DRL benchmarks and showed that the attacks require only poisoning as little as 0.025% of the training data. Compared with existing works of backdoor attacks on classification models, TrojDRL provides a first step towards understanding the vulnerability of DRL agents.  more » « less
Award ID(s):
1740079 1750009
NSF-PAR ID:
10181034
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proc. 57th ACM/IEEE Design Automation Conference (DAC), 2020
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Existing adversarial algorithms for Deep Reinforcement Learning (DRL) have largely focused on identifying an optimal time to attack a DRL agent. However, little work has been explored in injecting efficient adversarial perturbations in DRL environments. We propose a suite of novel DRL adversarial attacks, called ACADIA, representing AttaCks Against Deep reInforcement leArning. ACADIA provides a set of efficient and robust perturbation-based adversarial attacks to disturb the DRL agent's decision-making based on novel combinations of techniques utilizing momentum, ADAM optimizer (i.e., Root Mean Square Propagation, or RMSProp), and initial randomization. These kinds of DRL attacks with novel integration of such techniques have not been studied in the existing Deep Neural Networks (DNNs) and DRL research. We consider two well-known DRL algorithms, Deep-Q Learning Network (DQN) and Proximal Policy Optimization (PPO), under Atari games and MuJoCo where both targeted and non-targeted attacks are considered with or without the state-of-the-art defenses in DRL (i.e., RADIAL and ATLA). Our results demonstrate that the proposed ACADIA outperforms existing gradient-based counterparts under a wide range of experimental settings. ACADIA is nine times faster than the state-of-the-art Carlini & Wagner (CW) method with better performance under defenses of DRL. 
    more » « less
  2. Despite their tremendous success in a range of domains, deep learning systems are inherently susceptible to two types of manipulations: adversarial inputs -- maliciously crafted samples that deceive target deep neural network (DNN) models, and poisoned models -- adversely forged DNNs that misbehave on pre-defined inputs. While prior work has intensively studied the two attack vectors in parallel, there is still a lack of understanding about their fundamental connections: what are the dynamic interactions between the two attack vectors? what are the implications of such interactions for optimizing existing attacks? what are the potential countermeasures against the enhanced attacks? Answering these key questions is crucial for assessing and mitigating the holistic vulnerabilities of DNNs deployed in realistic settings. Here we take a solid step towards this goal by conducting the first systematic study of the two attack vectors within a unified framework. Specifically, (i) we develop a new attack model that jointly optimizes adversarial inputs and poisoned models; (ii) with both analytical and empirical evidence, we reveal that there exist intriguing "mutual reinforcement" effects between the two attack vectors -- leveraging one vector significantly amplifies the effectiveness of the other; (iii) we demonstrate that such effects enable a large design spectrum for the adversary to enhance the existing attacks that exploit both vectors (e.g., backdoor attacks), such as maximizing the attack evasiveness with respect to various detection methods; (iv) finally, we discuss potential countermeasures against such optimized attacks and their technical challenges, pointing to several promising research directions. 
    more » « less
  3. null (Ed.)
    Robustness of Deep Reinforcement Learning (DRL) algorithms towards adversarial attacks in real world applications such as those deployed in cyber-physical systems (CPS) are of increasing concern. Numerous studies have investigated the mechanisms of attacks on the RL agent's state space. Nonetheless, attacks on the RL agent's action space (corresponding to actuators in engineering systems) are equally perverse, but such attacks are relatively less studied in the ML literature. In this work, we first frame the problem as an optimization problem of minimizing the cumulative reward of an RL agent with decoupled constraints as the budget of attack. We propose the white-box Myopic Action Space (MAS) attack algorithm that distributes the attacks across the action space dimensions. Next, we reformulate the optimization problem above with the same objective function, but with a temporally coupled constraint on the attack budget to take into account the approximated dynamics of the agent. This leads to the white-box Look-ahead Action Space (LAS) attack algorithm that distributes the attacks across the action and temporal dimensions. Our results showed that using the same amount of resources, the LAS attack deteriorates the agent's performance significantly more than the MAS attack. This reveals the possibility that with limited resource, an adversary can utilize the agent's dynamics to malevolently craft attacks that causes the agent to fail. Additionally, we leverage these attack strategies as a possible tool to gain insights on the potential vulnerabilities of DRL agents. 
    more » « less
  4. null (Ed.)
    While Deep Reinforcement Learning has emerged as a de facto approach to many complex experience-driven networking problems, it remains challenging to deploy DRL into real systems. Due to the random exploration or half-trained deep neural networks during the online training process, the DRL agent may make unexpected decisions, which may lead to system performance degradation or even system crash. In this paper, we propose PnP-DRL, an offline-trained, plug and play DRL solution, to leverage the batch reinforcement learning approach to learn the best control policy from pre-collected transition samples without interacting with the system. After being trained without interaction with systems, our Plug and Play DRL agent will start working seamlessly, without additional exploration or possible disruption of the running systems. We implement and evaluate our PnP-DRL solution on a prevalent experience-driven networking problem, Dynamic Adaptive Streaming over HTTP (DASH). Extensive experimental results manifest that 1) The existing batch reinforcement learning method has its limits; 2) Our approach PnP-DRL significantly outperforms classical adaptive bitrate algorithms in average user Quality of Experience (QoE); 3) PnP-DRL, unlike the state-of-the-art online DRL methods, can be off and running without learning gaps, while achieving comparable performances. 
    more » « less
  5. In this work, we propose an energy-adaptive moni-toring system for a solar sensor-based smart animal farm (e.g., cattle). The proposed smart farm system aims to maintain high-quality monitoring services by solar sensors with limited and fluctuating energy against a full set of cyberattack behaviors including false data injection, message dropping, or protocol non-compliance. We leverage Subjective Logic (SL) as the belief model to consider different types of uncertainties in opinions about sensed data. We develop two Deep Reinforcement Learning (D RL) schemes leveraging the design concept of uncertainty maximization in SL for DRL agents running on gateways to collect high-quality sensed data with low uncertainty and high freshness. We assess the performance of the proposed energy-adaptive smart farm system in terms of accumulated reward, monitoring error, system overload, and battery maintenance level. We compare the performance of the two DRL schemes developed (i.e., multi-agent deep Q-Iearning, MADQN, and multi-agent proximal policy optimization, MAPPO) with greedy and random baseline schemes in choosing the set of sensed data to be updated to collect high-quality sensed data to achieve resilience against attacks. Our experiments demonstrate that MAPPO with the uncertainty maximization technique outperforms its counterparts. 
    more » « less