skip to main content


Title: An extreme amplitude, massive heartbeat system in the LMC characterized using ASAS-SN and TESS
ABSTRACT Using ASAS-SN data, we find that the bright ($V\sim 13.5$ mag) variable star MACHO 80.7443.1718 (ASASSN-V J052624.38–684705.6) is the most extreme heartbeat star yet discovered. This massive binary, consisting of at least one early B-type star, has an orbital period of $P_{\rm ASAS-SN}=32.83627\pm 0.00846\, {\rm d},$ and is located towards the LH58 OB complex in the LMC. Both the ASAS-SN and TESS light curves show extreme brightness variations of ${\sim }40{{\ \rm per\ cent}}$ at periastron and variations of $ \sim 10{{\ \rm per\ cent}}$ due to tidally excited oscillations outside periastron. We fit an analytical model of the variability caused by the tidal distortions at pericentre to find orbital parameters of $\omega =-61.4^\circ$, $i=44.8^\circ$, and $e=0.566$. We also present a frequency analysis to identify the pulsation frequencies corresponding to the tidally excited oscillations.  more » « less
Award ID(s):
1908952 1908570
NSF-PAR ID:
10181134
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
489
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
4705 to 4711
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT We characterize the extreme heartbeat star system MACHO 80.7443.1718 in the Large Magellanic Cloud using Transiting Exoplanet Survey Satellite (TESS) photometry and spectroscopic observations from the Magellan Inamori Kyocera Echelle (MIKE) and SOAR Goodman spectographs. MACHO 80.7443.1718 was first identified as a heartbeat star system in the All-Sky Automated Survey for SuperNovae (ASAS-SN) with $P_{\rm orb}=32.836\pm 0.008\, {\rm d}$. MACHO 80.7443.1718 is a young (∼6 Myr), massive binary, composed of a B0 Iae supergiant with $M_1 \simeq 35\, {\rm M}_\odot$ and an O9.5V secondary with $M_2 \simeq 16\, {\rm M}_\odot$ on an eccentric (e = 0.51 ± 0.03) orbit. In addition to having the largest variability amplitude amongst all known heartbeats stars, MACHO 80.7443.1718 is also one of the most massive heartbeat stars yet discovered. The B[e] supergiant has Balmer emission lines and permitted/forbidden metallic emission lines associated with a circumstellar disc. The disc rapidly dissipates at periastron that could indicate mass transfer to the secondary, but re-emerges immediately following periastron passage. MACHO 80.7443.1718 also shows tidally excited oscillations at the N = 25 and N = 41 orbital harmonics and has a rotational period of 4.4 d. 
    more » « less
  2. ABSTRACT

    We revisit the tidally excited oscillations (TEOs) in the A-type main-sequence eccentric binary KOI-54, the prototype of heartbeat stars. Although the linear tidal response of the star is a series of orbital-harmonic frequencies which are not stellar eigenfrequencies, we show that the non-linearly excited non-orbital-harmonic TEOs are eigenmodes. By carefully choosing the modes which satisfy the mode-coupling selection rules, a period spacing (ΔP) pattern of quadrupole gravity modes (ΔP ≈ 2520–2535 s) can be discerned in the Fourier spectrum, with a detection significance level of $99.9{{\ \rm per\ cent}}$. The inferred period spacing value agrees remarkably well with the theoretical l = 2, m = 0 g modes from a stellar model with the measured mass, radius, and effective temperature. We also find that the two largest-amplitude TEOs at N = 90, 91 harmonics are very close to resonance with l = 2, m = 0 eigenmodes, and likely come from different stars. Previous works on tidal oscillations primarily focus on the modelling of TEO amplitudes and phases, the high sensitivity of TEO amplitude to the frequency detuning (tidal forcing frequency minus the closest stellar eigenfrequency) requires extremely dense grids of stellar models and prevents us from constraining the stellar physical parameters easily. This work, however, opens the window of real tidal asteroseismology by using the eigenfrequencies of the star inferred from the non-linear TEOs and possibly very-close-to-resonance linear TEOs. Our seismic modelling of these identified eigen g-modes shows that the best-matching stellar models have (M ≈ 2.20, 2.35 M⊙) and super-solar metallicity, in good agreement with previous measurements.

     
    more » « less
  3. null (Ed.)
    ABSTRACT The hyper-velocity star S5-HVS1, ejected 5 Myr ago from the Galactic Centre at 1800 km s−1, was most likely produced by tidal break-up of a tight binary by the supermassive black hole SgrA*. Taking a Monte Carlo approach, we show that the former companion of S5-HVS1 was likely a main-sequence star between 1.2 and 6 M⊙ and was captured into a highly eccentric orbit with pericentre distance in the range of 1–10 au and semimajor axis about 103 au. We then explore the fate of the captured star. We find that the heat deposited by tidally excited stellar oscillation modes leads to runaway disruption if the pericentre distance is smaller than about $3\rm \, au$. Over the past 5 Myr, its angular momentum has been significantly modified by orbital relaxation, which may stochastically drive the pericentre inwards below $3\rm \, au$ and cause tidal disruption. We find an overall survival probability in the range 5 per cent to 50 per cent, depending on the local relaxation time in the close environment of the captured star, and the initial pericentre at capture. The pericentre distance of the surviving star has migrated to 10–100 au, making it potentially the most extreme member of the S-star cluster. From the ejection rate of S5-HVS1-like stars, we estimate that there may currently be a few stars in such highly eccentric orbits. They should be detectable (typically $K_{\rm s}\lesssim 18.5\,$ mag) by the GRAVITY instrument and by future Extremely Large Telescopes and hence provide an extraordinary probe of the spin of SgrA*. 
    more » « less
  4. null (Ed.)
    ABSTRACT We report the discovery of the closest known black hole candidate as a binary companion to V723 Mon. V723 Mon is a nearby ($d\sim 460\, \rm pc$), bright (V ≃ 8.3 mag), evolved (Teff, giant ≃ 4440 K, and Lgiant ≃ 173 L⊙) red giant in a high mass function, f(M) = 1.72 ± 0.01 M⊙, nearly circular binary (P = 59.9 d, e ≃ 0). V723 Mon is a known variable star, previously classified as an eclipsing binary, but its All-Sky Automated Survey, Kilodegree Extremely Little Telescope, and Transiting Exoplanet Survey Satellite light curves are those of a nearly edge-on ellipsoidal variable. Detailed models of the light curves constrained by the period, radial velocities, and stellar temperature give an inclination of $87.0^{\circ ^{+1.7^\circ }}_{-1.4^\circ }$, a mass ratio of q ≃ 0.33 ± 0.02, a companion mass of Mcomp = 3.04 ± 0.06 M⊙, a stellar radius of Rgiant = 24.9 ± 0.7 R⊙, and a giant mass of Mgiant = 1.00 ± 0.07 M⊙. We identify a likely non-stellar, diffuse veiling component with contributions in the B and V band of ${\sim }63{{\ \rm per\ cent}}$ and ${\sim }24{{\ \rm per\ cent}}$, respectively. The SED and the absence of continuum eclipses imply that the companion mass must be dominated by a compact object. We do observe eclipses of the Balmer lines when the dark companion passes behind the giant, but their velocity spreads are low compared to observed accretion discs. The X-ray luminosity of the system is $L_{\rm X}\simeq 7.6\times 10^{29}~\rm ergs~s^{-1}$, corresponding to L/Ledd ∼ 10−9. The simplest explanation for the massive companion is a single compact object, most likely a black hole in the ‘mass gap’. 
    more » « less
  5. ABSTRACT

    As part of an All-Sky Automated Survey for SuperNovae (ASAS-SN) search for sources with large flux decrements, we discovered a transient where the quiescent, stellar source ASASSN-V J192114.84+624950.8 rapidly decreased in flux by $\sim 55{{\ \rm per\ cent}}$ (∼0.9 mag) in the g band. The Transiting Exoplanet Survey Satellite light curve revealed that the source is a highly eccentric, eclipsing binary. Fits to the light curve using phoebe find the binary orbit to have e = 0.79, Porb = 18.462 d, and i = 88.6°, and the ratios of the stellar radii and temperatures to be R2/R1 = 0.71 and Te,2/Te,1 = 0.82. Both stars are chromospherically active, allowing us to determine their rotational periods of P1 = 1.52 d and P2 = 1.79 d, respectively. A Large Binocular Telescope/Multi-Object Double Spectrograph spectrum shows that the primary is a late-G- or early-K-type dwarf. Fits to the spectral energy distribution show that the luminosities and temperatures of the two stars are L1 = 0.48 L⊙, $T_1= 5050\, \mathrm{K}$, L2 = 0.12 L⊙, and $T_{2} = 4190\, \mathrm{K}$. We conclude that ASASSN-V J192114.84+624950.8 consists of two chromospherically active, rotational variable stars in a highly elliptical eclipsing orbit.

     
    more » « less