ABSTRACT The All-Sky Automated Survey for Supernovae (ASAS-SN) provides long baseline (∼4 yr) light curves for sources brighter than V ≲ 17 mag across the whole sky. As part of our effort to characterize the variability of all the stellar sources visible in ASAS-SN, we have produced ∼30.1 million V-band light curves for sources in the Southern hemisphere using the APASS DR9 (AAVSO Photometric All-Sky Survey Data Release) catalogue as our input source list. We have systematically searched these sources for variability using a pipeline based on random forest classifiers. We have identified $${\sim } 220\, 000$$ variables, including $${\sim } 88\, 300$$ new discoveries. In particular, we have discovered $${\sim }48\, 000$$ red pulsating variables, $${\sim }23\, 000$$ eclipsing binaries, ∼2200 δ-Scuti variables, and $${\sim }10\, 200$$ rotational variables. The light curves and characteristics of the variables are all available through the ASAS-SN variable stars data base (https://asas-sn.osu.edu/variables). The pre-computed ASAS-SN V-band light curves for all the ∼30.1 million sources are available through the ASAS-SN photometry data base (https://asas-sn.osu.edu/photometry). This effort will be extended to provide ASAS-SN light curves for sources in the Northern hemisphere and for V ≲ 17 mag sources across the whole sky that are not included in APASS DR9.
more »
« less
The ASAS-SN catalogue of variable stars VI: an all-sky sample of δ Scuti stars
ABSTRACT We characterize an all-sky catalogue of ∼8400 δ Scuti variables in ASAS-SN, which includes ∼3300 new discoveries. Using distances from Gaia DR2, we derive period–luminosity relationships for both the fundamental mode and overtone pulsators in the WJK, V, Gaia DR2 G, J, H, Ks, and W1 bands. We find that the overtone pulsators have a dominant overtone mode, with many sources pulsating in the second overtone or higher order modes. The fundamental mode pulsators have metallicity-dependent periods, with log10(P) ∼ −1.1 for $$\rm [Fe/H]\lt -0.3$$ and log10(P) ∼ −0.9 for $$\rm [Fe/H]\gt 0$$, which leads to a period-dependent scale height. Stars with $$P\gt 0.100\, \rm d$$ are predominantly located close to the Galactic disc ($$\rm |\mathit{ Z}|\lt 0.5\, kpc$$). The median period at a scale height of $$Z\sim 0\, \rm kpc$$ also increases with the Galactocentric radius R, from log10(P) ∼ −0.94 for sources with $$R\gt 9\, \rm kpc$$ to log10(P) ∼ −0.85 for sources with $$R\lt 7\, \rm kpc$$, which is indicative of a radial metallicity gradient. To illustrate potential applications of this all-sky catalogue, we obtained 30 min cadence, image subtraction TESS light curves for a sample of 10 fundamental mode and 10 overtone δ Scuti stars discovered by ASAS-SN. From this sample, we identified two new δ Scuti eclipsing binaries, ASASSN-V J071855.62−434247.3 and ASASSN-V J170344.20−615941.2 with short orbital periods of Porb = 2.6096 and 2.5347 d, respectively.
more »
« less
- PAR ID:
- 10164488
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 493
- Issue:
- 3
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 4186 to 4208
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT The All-Sky Automated Survey for Supernovae (ASAS-SN) is the first optical survey to monitor the entire sky, currently with a cadence of ≲ 24 h down to g ≲ 18.5 mag. ASAS-SN has routinely operated since 2013, collecting ∼ 2 000 to over 7 500 epochs of V- and g-band observations per field to date. This work illustrates the first analysis of ASAS-SN’s newer, deeper, and higher cadence g-band data. From an input source list of ∼55 million isolated sources with g < 18 mag, we identified 1.5 × 106 variable star candidates using a random forest (RF) classifier trained on features derived from Gaia, 2MASS, and AllWISE. Using ASAS-SN g-band light curves, and an updated RF classifier augmented with data from Citizen ASAS-SN, we classified the candidate variables into eight broad variability types. We present a catalogue of ∼116 000 new variable stars with high-classification probabilities, including ∼111 000 periodic variables and ∼5 000 irregular variables. We also recovered ∼263 000 known variable stars.more » « less
-
Abstract δScuti variables are found at the intersection of the classical instability strip and the main sequence on the Hertzsprung–Russell diagram. With space-based photometry providing millions of light curves of A-F type stars, we can now probe the occurrence rate ofδScuti pulsations in detail. Using the 30 minutes cadence light curves from NASA's Transiting Exoplanet Survey Satellite's first 26 sectors, we identify variability in 103,810 stars within 5–24 cycles per day down to a magnitude ofT= 11.25. We fit the period–luminosity relation of the fundamental radial mode forδScuti stars in the GaiaGband, allowing us to distinguish classical pulsators from contaminants for a subset of 39,367 stars. Out of this subset, over 15,918 are found on or above the expected period–luminosity relation. We derive an empirical red edge to the classical instability strip using Gaia photometry. The center where the pulsator fraction peaks at 50%–70%, combined with the red edge, agrees well with previous work in the Kepler field. While many variable sources are found below the period–luminosity relation, over 85% of sources inside of the classical instability strip derived in this work are consistent with beingδScuti stars. The remaining 15% of variables within the instability strip are likely hybrid orγDoradus pulsators. Finally, we discover strong evidence for a correlation between pulsator fraction and spectral line broadening from the Radial Velocity Spectrometer on board the Gaia spacecraft, confirming that rotation has a role in driving pulsations inδScuti stars.more » « less
-
ABSTRACT We explore the synergy between photometric and spectroscopic surveys by searching for periodic variable stars among the targets observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) using photometry from the All-Sky Automated Survey for Supernovae (ASAS-SN). We identified 1924 periodic variables among more than $$258\, 000$$ APOGEE targets; 465 are new discoveries. We homogeneously classified 430 eclipsing and ellipsoidal binaries, 139 classical pulsators (Cepheids, RR Lyrae, and δ Scuti), 719 long-period variables (pulsating red giants), and 636 rotational variables. The search was performed using both visual inspection and machine learning techniques. The light curves were also modelled with the damped random walk stochastic process. We find that the median [Fe/H] of variable objects is lower by 0.3 dex than that of the overall APOGEE sample. Eclipsing binaries and ellipsoidal variables are shifted to a lower median [Fe/H] by 0.2 dex. Eclipsing binaries and rotational variables exhibit significantly broader spectral lines than the rest of the sample. We make ASAS-SN light curves for all the APOGEE stars publicly available and provide parameters for the variable objects.more » « less
-
ABSTRACT We characterize $${\sim } 71\, 200$$ W Ursae Majoris (UMa) type (EW) contact binaries, including $${\sim } 12\, 600$$ new discoveries, using All-Sky Automated Survey for SuperNovae (ASAN-SN)V-band all-sky light curves along with archival data from Gaia, 2MASS, AllWISE, LAMOST, GALAH, RAVE, and APOGEE. There is a clean break in the EW period–luminosity relation at $$\rm \log (\it P/{\rm d})\,{\simeq }\,{\rm -0.30}$$, separating the longer period, early-type EW binaries from the shorter period, late-type systems. The two populations are even more cleanly separated in the space of period and effective temperature, by $$T_{\rm eff}=6710\,{\rm K}-1760\,{\rm K}\, \log (P/0.5\,{\rm d})$$. Early-type and late-type EW binaries follow opposite trends in Teff with orbital period. For longer periods, early-type EW binaries are cooler, while late-type systems are hotter. We derive period–luminosity relationships in the WJK, V, Gaia DR2 G, J, H, Ks, and W1 bands for the late-type and early-type EW binaries separated by both period and effective temperature, and by period alone. The dichotomy of contact binaries is almost certainly related to the Kraft break and the related changes in envelope structure, winds, and angular momentum loss.more » « less