skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A low-cost and duplicable portable solar adaptive optics system based on LabVIEW hybrid programming
Abstract We have developed a portable solar adaptive optics (PSAO) for diffraction-limited imaging based on today’s multi-core personal computer. Our PSAO software is written in LabVIEW code, which features block-diagram function based programming and can dramatically speed up the software development. The PSAO can achieve a ~1000 Hz open-loop correction speed with a Shack–Hartmann Wave-front Sensor (SH-WFS) in 11 × 11 sub-aperture configuration. The image shift measurements for solar wave-front sensing are the most time-consuming computations in a solar adaptive optics (AO) system. Since our current LabVIEW program does not fully support multi-core techniques for the image shift measurements, it cannot fully take advantage of the multi-core computer’s power for parallel computation. In order to accelerate the AO system’s running speed, a dedicated message passing interface/open multi-processing parallel programming technique is developed for our LabVIEW-based AO program, which fully supports multi-core parallel computation in LabVIEW programming. Our experiments demonstrate that the hybrid parallel technique can significantly improve the running speed of the solar AO system, and this work paves the way for the applications of a low-cost and duplicable PSAO system for large solar telescopes.  more » « less
Award ID(s):
1906166
PAR ID:
10181273
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Publications of the Astronomical Society of Japan
Volume:
72
Issue:
2
ISSN:
0004-6264
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Schmidt, Dirk; Schreiber, Laura; Vernet, Elise (Ed.)
    We present the status and plans for the Keck All sky Precision Adaptive optics (KAPA) program. KAPA includes (1) an upgrade to the Keck I laser guide star adaptive optics (AO) facility to improve image quality and sky coverage, (2) the inclusion of AO telemetry-based point spread function estimates with all science exposures, (3) four key science programs, and (4) an educational component focused on broadening the participation of women and underrepresented groups in instrumentation. For this conference we focus on the KAPA upgrades since the 2020 SPIE proceedings1 including implementation of a laser asterism generator, wavefront sensor, real-time controller, asterism and turbulence simulators, the laser tomography system itself along with new operations software and science tools, and modifications to an existing near-infrared tip-tilt sensor to support multiple natural guide star and focus measurements. We will also report on the results of daytime and on-sky calibrations and testing. 
    more » « less
  2. Schmidt, Dirk; Schreiber, Laura; Vernet, Elise (Ed.)
    We present the status and plans for the Keck All sky Precision Adaptive optics (KAPA) program. KAPA includes four key science programs, an upgrade to the Keck I laser guide star (LGS) adaptive optics (AO) facility to improve image quality and sky coverage, AO telemetry based point spread function (PSF) estimates for all science exposures, and an educational component focused on broadening the participation of women and underrepresented groups in instrumentation. For the purpose of this conference we will focus on the AO facility upgrade which includes implementation of a new laser, wavefront sensor and real-time controller to support laser tomography, the laser tomography system itself, and modifications to an existing near-infrared tip-tilt sensor to support multiple natural guide star (NGS) and focus measurements. 
    more » « less
  3. Schmidt, Dirk; Schreiber, Laura; Vernet, Elise (Ed.)
    The MMT Adaptive optics exoPlanet characterization System (MAPS) is an exoplanet characterization program that encompasses instrument development, observational science, and education. The instrument we are developing for the 6.5m MMT observatory is multi-faceted, including a refurbished 336-actuator adaptive secondary mirror (ASM); two pyramid wavefront sensors (PyWFS's); a 1-kHz adaptive optics (AO) control loop; a high-resolution and long-wavelength upgrade to the Arizona infraRed Imager and Echelle Spectrograph (ARIES); and a new-AO-optimized upgrade to the MMT-sensitive polarimeter (MMT-Pol). With the completed MAPS instrument, we will execute a 60-night science program to characterize the atmospheric composition and dynamics of ~50-100 planets around other stars. The project is approaching first light, anticipated for Summer/Fall of 2022. With the electrical and optical tests complete and passing the review milestone for the ASM's development, it is currently being tuned. The PyWFS's are being built and integrated in their respective labs: the visible-light PyWFS at the University of Arizona (UA), and the infrared PyWFS at the University of Toronto (UT). The top-level AO control software is being developed at UA, with an on-sky calibration algorithm being developed at UT. ARIES development continues at UA, and MMT-Pol development is at the University of Minnesota. The science and education programs are in planning and preparation. We will present the design and development of the entire MAPS instrument and project, including an overview of lab results and next steps. 
    more » « less
  4. Schmidt, Dirk; Schreiber, Laura; Vernet, Elise (Ed.)
    The W. M. Keck Observatory Adaptive Optics (AO) facilities have been operating with a Field Programmable Gate Array (FPGA) based real time controller (RTC) since 2007. The RTC inputs data from various AO wavefront and tip/tilt sensors; and corrects image blurring from atmospheric turbulence via deformable and tip/tilt mirrors. Since its commissioning, the Keck I and Keck II RTCs have been upgraded to support new hardware such as pyramid wavefront and infrared tip-tilt sensors. However, they are reaching the limits of their capabilities in terms of processing bandwidth and the ability to interface with new hardware. Together with the Keck All-sky Precision Adaptive optics (KAPA) project, a higher performance and a more reliable RTC is needed to support next generation capabilities such as laser tomography and sensor fusion. This paper provides an overview of the new RTC system, developed with our contractor/collaborators (Microgate, Swinburne University of Technology and Australian National University), and the initial on-sky performance. The upgrade includes an Interface Module to interface with the wavefront sensors and controlled hardware, and a Graphical Processing Unit (GPU) based computational engine to meet the system’s control requirements and to provide a flexible software architecture to allow future algorithms development and capabilities. The system saw first light in 2021 and is being commissioned in 2022 to support single conjugate laser guide star (LGS) AO, along with a more sensitive EMCCD camera. Initial results are provided to demonstrate single NGS & LGS performance, system reliability, and the planned upgrade for four LGS to support laser tomography. 
    more » « less
  5. Iftekharuddin, Khan M.; Awwal, Abdul A.; Márquez, Andrés; Diaz-Ramirez, Victor H. (Ed.)
    One of the biggest challenges of free-space optical (FSO) communication is the wave-front aberration due to atmospheric turbulence. In FSO links the wave-front distortion manifests as a significant drop in received power, beam wander, information loss, and scintillation effects. The performance of FSO communication system is degraded significantly by the atmospheric turbulence effects. Fortunately, the adaptive optics system offers potential to mitigate the performance degradation, which is relevant for quantum communication applications as well. In our FSO experiment, we perform the transmission of 6.25 GBd QPSK signal over an FSO link without and with adaptive optics, operating at 1550nm. We emulate the atmospheric aberration in our indoor experimental setup by applying random Kolmogorov phase screens on spatial light modulators (SLMs). We demonstrate significant improvements in the power-collected, signal-to-noise-ratio (SNR), and bit-error-rate (BER) performance due to the application of adaptive optics. 
    more » « less