skip to main content

Title: Evolutionary Analysis of the Zinc Finger and Homeoboxes Family of Proteins Identifies Multiple Conserved Domains and a Common Early Chordate Ancestor
Abstract The Zinc Fingers and Homeoboxes (Zhx) proteins, Zhx1, Zhx2, and Zhx3, comprise a small family of proteins containing two amino-terminal C2–H2 zinc fingers and four or five carboxy-terminal homeodomains. These multiple homeodomains make Zhx proteins unusual because the majority of homeodomain-containing proteins contain a single homeodomain. Studies in cultured cells and mice suggest that Zhx proteins can function as positive or negative transcriptional regulators. Zhx2 regulates numerous hepatic genes, and all three Zhx proteins have been implicated in different cancers. Because Zhx proteins contain multiple predicted homeodomains, are associated with interesting physiological traits, and seem to be only present in the vertebrate lineage, we investigated the evolutionary history of this small family by comparing Zhx homologs from a wide range of chordates. This analysis indicates that the zinc finger motifs and homeodomains are highly similar among all Zhx proteins and also identifies additional Zhx-specific conserved regions, including a 13 amino acid amino-terminal motif that is nearly identical among all gnathostome Zhx proteins. We found single Zhx proteins in the sea lamprey (Petromyzon marinus) and in the nonvertebrate chordates sea squirt (Ciona intestinalis) and lancelet (Branchiostoma floridae); these Zhx proteins are most similar to gnathostome Zhx3. Based on our analyses, more » we propose that a duplication of the primordial Zhx gene gave rise to Zhx3 and the precursor to Zhx1 and Zhx2. A subsequent tandem duplication of this precursor generated Zhx1 and Zhx2 found in gnathostomes. « less
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Genome Biology and Evolution
Page Range or eLocation-ID:
174 to 184
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Freshwater sponges (Spongillida) are a unique lineage of demosponges that secondarily colonized lakes and rivers and are now found ubiquitously in these ecosystems. They developed specific adaptations to freshwater systems, including the ability to survive extreme thermal ranges, long-lasting dessication, anoxia, and resistance to a variety of pollutants. Although spongillids have colonized all freshwater systems, the family Lubomirskiidae is endemic to Lake Baikal and plays a range of key roles in this ecosystem. Our work compares the genomic content and microbiome of individuals of three species of the Lubomirskiidae, providing hypotheses for how molecular evolution has allowed them to adapt to their unique environments. We have sequenced deep (>92% of the metazoan “Benchmarking Universal Single-Copy Orthologs” [BUSCO] set) transcriptomes from three species of Lubomirskiidae and a draft genome resource for Lubomirskia baikalensis. We note Baikal sponges contain unicellular algal and bacterial symbionts, as well as the dinoflagellate Gyrodinium. We investigated molecular evolution, gene duplication, and novelty in freshwater sponges compared with marine lineages. Sixty one orthogroups have consilient evidence of positive selection. Transporters (e.g., zinc transporter-2), transcription factors (aristaless-related homeobox), and structural proteins (e.g. actin-3), alongside other genes, are under strong evolutionary pressure in freshwater, with duplication driving noveltymore »across the Spongillida, but especially in the Lubomirskiidae. This addition to knowledge of freshwater sponge genetics provides a range of tools for understanding the molecular biology and, in the future, the ecology (e.g., colonization and migration patterns) of these key species.« less
  2. Dokholyan, Nikolay (Ed.)
    Ubiquitin-like containing PHD and ring finger (UHRF)1 and UHRF2 are multidomain epigenetic proteins that play a critical role in bridging crosstalk between histone modifications and DNA methylation. Both proteins contain two histone reader domains, called tandem Tudor domain (TTD) and plant homeodomain (PHD), which read the modification status on histone H3 to regulate DNA methylation and gene expression. To shed light on the mechanism of histone binding by UHRF2, we have undergone a detailed molecular investigation with the TTD, PHD and TTD-PHD domains and compared the binding activity to its UHRF1 counterpart. We found that unlike UHRF1 where the PHD is the primary binding contributor, the TTD of UHRF2 has modestly higher affinity toward the H3 tail, while the PHD has a weaker binding interaction. We also demonstrated that like UHRF1, the aromatic amino acids within the TTD are important for binding to H3K9me3 and a conserved aspartic acid within the PHD forms an ionic interaction with R2 of H3. However, while the aromatic amino acids in the TTD of UHRF1 contribute to selectivity, the analogous residues in UHRF2 contribute to both selectivity and affinity. We also discovered that the PHD of UHRF2 contains a distinct asparagine in the H3R2more »binding pocket that lowers the binding affinity of the PHD by reducing a potential electrostatic interaction with the H3 tail. Furthermore, we demonstrate the PHD and TTD of UHRF2 cooperate to interact with the H3 tail and that dual domain engagement with the H3 tail relies on specific amino acids. Lastly, our data indicate that the unique stretch region in the TTD of UHRF2 can decrease the melting temperature of the TTD-PHD and represents a disordered region. Thus, these subtle but important mechanistic differences are potential avenues for selectively targeting the histone binding interactions of UHRF1 and UHRF2 with small molecules.« less
  3. Vertebrates have distinct tissues which are not present in invertebrate chordates nor other metazoans. The rise of these tissues also coincided with at least one round of whole-genome duplication as well as a suite of lineage-specific segmental duplications. Understanding whether novel genes lead to the origin and diversification of novel cell types, therefore, is of great importance in vertebrate evolution. Here we were particularly interested in the evolution of the vertebrate musculoskeletal system, the muscles and connective tissues that support a diversity of body plans. A major component of the musculoskeletal extracellular matrix (ECM) is fibrillar collagens, a gene family which has been greatly expanded upon in vertebrates. We thus asked whether the repertoire of fibrillar collagens in vertebrates reflects differences in the musculoskeletal system. To test this, we explored the diversity of fibrillar collagens in lamprey, a jawless vertebrate which diverged from jawed vertebrates (gnathostomes) more than five hundred million years ago and has undergone its own gene duplications. Some of the principal components of vertebrate hyaline cartilage are the fibrillar collagens type II and XI, but their presence in cartilage development across all vertebrate taxa has been disputed. We particularly emphasized the characterization of genes in the lampreymore »hyaline cartilage, testing if its collagen repertoire was similar to that in gnathostomes. Overall, we discovered thirteen fibrillar collagens from all known gene subfamilies in lamprey and were able to identify several lineage-specific duplications. We found that, while the collagen loci have undergone rearrangement, the Clade A genes have remained linked with the hox clusters, a phenomenon also seen in gnathostomes. While the lamprey muscular tissue was largely similar to that seen in gnathostomes, we saw considerable differences in the larval lamprey skeletal tissue, with distinct collagen combinations pertaining to different cartilage types. Our gene expression analyses were unable to identify type II collagen in the sea lamprey hyaline cartilage nor any other fibrillar collagen during chondrogenesis at the stages observed, meaning that sea lamprey likely no longer require these genes during early cartilage development. Our findings suggest that fibrillar collagens were multifunctional across the musculoskeletal system in the last common ancestor of vertebrates and have been largely conserved, but these genes alone cannot explain the origin of novel cell types.« less
  4. Abstract

    Enhancer activation by the MLR family of H3K4 mono-methyltransferases requires proper recognition of histones for the deposition of the mono-methyl mark. MLR proteins contain two clusters of PHD zinc finger domains implicated in chromatin regulation. The second cluster is the most highly conserved, preserved as an ancient three finger functional unit throughout evolution. Studies of the isolated 3rd PHD finger within this cluster suggested specificity for the H4 [aa16–20] tail region. We determined the histone binding properties of the full three PHD finger cluster b module (PHDb) from the Drosophila Cmi protein which revealed unexpected recognition of an extended region of H3. Importantly, the zinc finger spacer separating the first two PHDb fingers from the third is critical for proper alignment and coordination among fingers for maximal histone engagement. Human homologs, MLL3 and MLL4, also show conservation of H3 binding, expanding current views of histone recognition for this class of proteins. We further implicate chromatin remodeling by the SWI/SNF complex as a possible mechanism for the accessibility of PHDb to globular regions of histone H3 beyond the tail region. Our results suggest a two-tail histone recognition mechanism by the conserved PHDb domain involving a flexible hinge to promote interdomainmore »coordination.

    « less
  5. Abstract

    Opportunistic yeast pathogens arose multiple times in the Saccharomycetes class, including the recently emerged, multidrug-resistant (MDR) Candida auris. We show that homologs of a known yeast adhesin family in Candida albicans, the Hyr/Iff-like (Hil) family, are enriched in distinct clades of Candida species as a result of multiple, independent expansions. Following gene duplication, the tandem repeat–rich region in these proteins diverged extremely rapidly and generated large variations in length and β-aggregation potential, both of which are known to directly affect adhesion. The conserved N-terminal effector domain was predicted to adopt a β-helical fold followed by an α-crystallin domain, making it structurally similar to a group of unrelated bacterial adhesins. Evolutionary analyses of the effector domain in C. auris revealed relaxed selective constraint combined with signatures of positive selection, suggesting functional diversification after gene duplication. Lastly, we found the Hil family genes to be enriched at chromosomal ends, which likely contributed to their expansion via ectopic recombination and break-induced replication. Combined, these results suggest that the expansion and diversification of adhesin families generate variation in adhesion and virulence within and between species and are a key step toward the emergence of fungal pathogens.