In Late Pleistocene North America colonizing hunter-gatherers knapped and used Clovis fluted projectile points. During their expansion the size and shape of Clovis points changed significantly. Archaeologists know that cultural drift contributed to this variation, but is it possible that this single source could alone generate so much variation so quickly? We present the first of several experimental studies exploring whether Clovis size and shape variation results in performance differences, focusing here on how deeply different Clovis point forms penetrate a target. Our ballistics experiment demonstrates that seven different Clovis point forms penetrated the same target with different effectiveness. Even after tip cross-sectional perimeter is accounted for, there are significant differences in penetration depths between two of the point types. These results are consistent with the hypothesis that Clovis people in different times and places may have chosen specific attributes to provide them with a selective functional advantage.
more »
« less
Tip cross-sectional geometry predicts the penetration depth of stone-tipped projectiles
Abstract Understanding prehistoric projectile weaponry performance is fundamental to unraveling past humans’ survival and the evolution of technology. One important debate involves how deeply stone-tipped projectiles penetrate a target. Theoretically, all things being equal, projectiles with smaller tip cross-sectional geometries should penetrate deeper into a target than projectiles with larger tip cross-sectional geometries. Yet, previous experiments have both supported and questioned this theoretical premise. Here, under controlled conditions, we experimentally examine fourteen types of stone-tipped projectile each possessing a different cross-sectional geometry. Our results show that both tip cross-sectional area (TCSA) and tip cross-sectional perimeter (TCSP) exhibit a strong, significant inverse relationship with target penetration depth, although TCSP’s relationship is stronger. We discuss why our experimental results support what is mathematically predicted while previous experiments have not. Our results are consistent with the hypothesis that when stone tip cross-sectional geometries become smaller over time in particular contexts, this evolution may be due to the selection of these attributes for increased penetration.
more »
« less
- PAR ID:
- 10181474
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Over the last decade, it has become clear that for heavy ion projectiles, the projectile’s transverse coherence length must be considered in theoretical models. While traditional scattering theory often assumes that the projectile has an infinite coherence length, many studies have demonstrated that the effect of projectile coherence cannot be ignored, even when the projectile-target interaction is within the perturbative regime. This has led to a surge in studies that examine the effects of the projectile’s coherence length. Heavy-ion collisions are particularly well-suited to this because the projectile’s momentum can be large, leading to a small deBroglie wavelength. In contrast, electron projectiles that have larger deBroglie wavelengths and coherence effects can usually be safely ignored. However, the recent demonstration of sculpted electron wave packets opens the door to studying projectile coherence effects in electron-impact collisions. We report here theoretical triple differential cross-sections (TDCSs) for the electron-impact ionization of helium using Bessel and Laguerre-Gauss projectiles. We show that the projectile’s transverse coherence length affects the shape and magnitude of the TDCSs and that the atomic target’s position within the projectile beam plays a significant role in the probability of ionization. We also demonstrate that projectiles with large coherence lengths result in cross-sections that more closely resemble their fully coherent counterparts.more » « less
-
Plant root growth is often accompanied by circumnutative motion consisting of downward helical movement of the root tip. Previous studies indicate that circumnutations allow roots to avoid obstacles that would impede root growth, while other studies show that circumnutations can reduce the penetration resistance mobilised during root growth. Discrete-element modelling (DEM) simulations were performed on probes that employ circumnutation-inspired motion (CIM) to penetrate granular assemblies at shallow depths to evaluate the reduction in penetration resistance. These simulations investigate the effect of the ratio of tangential to vertical velocity of the circumnutative motion (i.e. relative velocity) and of the probe geometry (i.e. tip tilt angle and length). The results indicate that CIM penetration reduces the penetration force and work relative to non-rotational penetration (NRP) by changing the soil fabric and diffusing the force chains around the probe tip. However, the circumnutative motion leads to an increase in torque and associated rotational work. An optimal relative velocity and probe geometry exist for the simulated CIM probes, resulting in a smaller total work than that required for NRP. CIM penetration also mobilises smaller penetration forces and work than rotational penetration (i.e. with a straight tip), particularly at smaller relative velocities. The reduction in penetration forces induced by CIM could facilitate site investigation and monitoring activities.more » « less
-
Ratios for target Ar K‐shell ionization associated with single and double electron capture, as well as the ratios corresponding to total capture and the projectile K x rays, were determined for 1.8‐ to 2.2‐MeV/u F7 + ,8 + ,9+projectiles. This work was performed at Western Michigan University with the tandem Van de Graaff accelerator. Coincidences between emitted K‐shell X‐rays (both target and projectile) and the corresponding charge‐changed particles were observed. The F9+Ar K X‐ray coincidence ratios for double to single capture are found to well exceed unity over the limited energy range of the measurements. Possible explanations for this anomalous behavior are discussed.more » « less
-
Site characterization activities, such as Cone Penetration Testing (CPT), Pressuremeter Testing (PMT), and Dilatometer Testing (DMT), can be compromised due to challenges associated with equipment mobilization. This situation is common at locations such as the toe of dams, dense urban environments, deep water, and extraterrestrial bodies. This research uses bio-inspiration to develop a probe that can penetrate itself into the subsurface, eliminating the need for a drill rig to provide the reaction mass. This probe uses an adaptation employed by razor clams, worms, and caecilians where a body section is radially expanded to form an anchor which generates the reaction force needed to penetrate the soil. This paper presents a Discrete Element Modeling (DEM) study of the self-penetration process of this probe. Analysis of soil stress states indicates that the probe configuration influences its self-penetration ability. Specifically, the distance between the anchor and the tip affects the interaction between these probe parts due to principal stress rotation and arching. The results indicate that self-penetration is achievable in medium-dense coarse-grained soil by bio-inspired probes with smaller anchor-tip spacings and provide useful information for the design of future probe prototypes.more » « less
An official website of the United States government
