skip to main content


Title: Position: Accessible Block-Based Programming: Why and How
Block-based programming environments are very popular for introducing children to programming. Unfortunately, they are not accessible to many children with visual or motor impairments. In this paper we outline why block-based environments should be made accessible for these children, describe current efforts to make environments accessible, and describe how developers can incorporate accessibility into their own block-based programming environments.  more » « less
Award ID(s):
1738252
NSF-PAR ID:
10181520
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2019 IEEE Blocks and Beyond Workshop (B&B)
Page Range / eLocation ID:
19 to 22
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Code-first learning entails the use of computer code to learn a concept, and creating computational models is one such effective method for learning about scientific phenomena. Many code-first learning approaches employ the visual block-based programming paradigm in order to be accessible to school children with no prior programming experience, providing them with high-level domain-specific code-blocks that encapsulate the underlying complex programming logic. However, even with the aid of visual clues and the benefit of simpler primitives like “forward” and “repeat,” many phenomena studied in classrooms such as the behavior of gas particles in Kinetic Molecular Theory (KMT) are challenging to describe in code. We hypothesized that code blocks designed from a phenomenological perspective to model the behavior of familiar objects and events would both promote students’ authoring of computational models and their ability to encode and test their beliefs within their models. We created these phenomenological blocks within a code-first gas particle sandbox and integrated it into a KMT lesson plan.Two high school teachers taught this curriculum to 121 students, from which we gathered and analyzed video footage from lesson activities and student focus groups. We found that the phenomenological blocks gave students the ability to start programming right away and to express their intuitive understanding of KMT through computational models. This exploratory study demonstrates the potential for phenomenological programming to broaden the application and accessibility of code-first computational modeling for learning scientific phenomena. 
    more » « less
  2. null (Ed.)
    Code-first learning entails the use of computer code to learn a concept, and creating computational models is one such effective method for learning about scientific phenomena. Many code-first learning approaches employ the visual block-based programming paradigm in order to be accessible to school children with no prior programming experience, providing them with high- level domain-specific code-blocks that encapsulate the underlying complex programming logic. However, even with the aid of visual clues and the benefit of simpler primitives like “forward” and “repeat,” many phenomena studied in classrooms such as the behavior of gas particles in Kinetic Molecular Theory (KMT) are challenging to describe in code. We hypothesized that code blocks designed from a phenomenological perspective to model the behavior of familiar objects and events would both promote students’ authoring of computational models and their ability to encode and test their beliefs within their models. We created these phenomenological blocks within a code-first gas particle sandbox and integrated it into a KMT lesson plan. Two high school teachers taught this curriculum to 121 students, from which we gathered and analyzed video footage from lesson activities and student focus groups. We found that the phenomenological blocks gave students the ability to start programming right away and to express their intuitive understanding of KMT through computational models. This exploratory study demonstrates the potential for phenomenological programming to broaden the application and accessibility of code-first computational modeling for learning scientific phenomena. 
    more » « less
  3. null (Ed.)
    Makerspaces can support educational experiences in prototyping for children. Storytelling platforms enable high levels of creativity and expression, but have high barriers of entry. We introduce StoryMakAR, which combines making and storytelling. StoryMakAR is a new AR-IoT system for children that uses block programming, physical prototyping, and event-based storytelling to bring stories to life. We reduce the barriers to entry for youth (Age=14-18) by designing an accessible, plug-and-play system through merging both electro-mechanical devices and virtual characters to create stories. We describe our initial design process, the evolution and workflow of StoryMakAR, and results from multiple single-session workshops with 33 high school students. Our preliminary studies led us to understand what students want to make. We provide evidence of how students both engage and have difficulties with maker-based storytelling. We also discuss the potential for StoryMakAR to be used as a learning environment for classrooms and younger students. 
    more » « less
  4. Antona M., Stephanidis C. (Ed.)
    Block-based programming applications, such as MIT’s Scratch and Blockly Games, are commonly used to teach K-12 students to code. Due to the COVID-19 pandemic, many K-12 students are attending online coding camps, which teach programming using these block-based applications. However, these applications are not accessible to the Blind/Low Vision (BLV) population since they neither produce audio output nor are screen reader accessible. In this paper, we describe a solution to make block-based programming accessible to BLV students using Google’s latest Keyboard Navigation and present its evaluation with four individuals who are BLV. We distill our findings as recommendations to developers who may want to make their Block-based programming application accessible to individuals who are BLV. 
    more » « less
  5. Blocks-based programming environments are a popular tool to teach children to program, but they rely heavily on visual metaphors and are therefore not fully accessible for children with visual impairments. We evaluated existing blocks-based environments and identified five major accessibility barriers for visually impaired users. We explored techniques to overcome these barriers in an interview with a teacher of the visually impaired and formative studies on a touchscreen blocks-based environment with five children with visual impairments. We distill our findings on usable touchscreen interactions into guidelines for designers of blocks-based environments. 
    more » « less