skip to main content


Title: Accessible Block-Based Programming for K-12 Students Who Are Blind or Low Vision
Block-based programming applications, such as MIT’s Scratch and Blockly Games, are commonly used to teach K-12 students to code. Due to the COVID-19 pandemic, many K-12 students are attending online coding camps, which teach programming using these block-based applications. However, these applications are not accessible to the Blind/Low Vision (BLV) population since they neither produce audio output nor are screen reader accessible. In this paper, we describe a solution to make block-based programming accessible to BLV students using Google’s latest Keyboard Navigation and present its evaluation with four individuals who are BLV. We distill our findings as recommendations to developers who may want to make their Block-based programming application accessible to individuals who are BLV.  more » « less
Award ID(s):
1842092
PAR ID:
10302001
Author(s) / Creator(s):
Editor(s):
Antona M., Stephanidis C.
Date Published:
Journal Name:
Human-Computer Interaction. Access to Media, Learning and Assistive Environments. HCII 2021
Volume:
12769
Issue:
Lecture Notes in Computer Science, Springer, Cham. https://doi.org/10
Page Range / eLocation ID:
52-61
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The College Board's AP Computer Science Principles (CSP) content has become a major new course for introducing K-12 students to the discipline. The course was designed for many reasons, but one major goal was to broaden participation. While significant work has been completed toward equity by many research groups, we know of no systematic analysis of CSP content created by major vendors in relation to accessibility for students with disabilities, especially those who are blind or visually impaired. In this experience report, we discuss two major actions by our team to make CSP more accessible. First, with the help of accessibility experts and teachers, we modified the entire Code.org CSP course to make it accessible. Second, we conducted a one-week professional development workshop in the summer of 2018 for teachers of blind or visually impaired students in order to help them prepare to teach CSP or support those who do. We report here on lessons learned that are useful to teachers who have blind or visually impaired students in their classes, to AP CSP curriculum providers, and to the College Board. 
    more » « less
  2. null (Ed.)
    Developing narrative and computational thinking skills is crucial for K-12 student learning. A growing number of K-12 teachers are utilizing digital storytelling, where students create short narratives around a topic, as a means of creating motivating problem-solving activities for a variety of domains, including history and science. At the same time, there is increasing awareness of the need to engage K-12 students in computational thinking, including elementary school students. Given the challenges that the syntax of text-based programming languages poses for even novice university-level learners, block-based programming languages have emerged as an effective tool for introducing computational thinking to elementary-level students. Leveraging the unique affordances of narrative and computational thinking offers significant potential for student learning; however, integrating them presents significant challenges. In this paper, we describe initial work toward solving this problem by introducing an approach to block-based programming for interactive storytelling to engage upper elementary students (ages 9 to 11) in computational thinking and narrative skill development. Leveraging design principles and best practices from prior research on elementary-grade block-based programming and digital storytelling, we propose a set of custom blocks enabling learners to create interactive narratives. We describe both the process used to derive the custom blocks, including their alignment with elements of interactive narrative and with specific computational thinking curricular goals, as well as lessons learned from students interacting with a prototype learning environment utilizing the block-based programming approach. 
    more » « less
  3. Recent years have seen a growing recognition of the importance of enabling K-12 students to engage in computational thinking, particularly in elementary grades where students' dispositions toward STEM are developing. Block-based programming has emerged as an effective tool for engaging these novice learners in computational thinking. At the same time, digital storytelling has emerged as a promising avenue for creating motivating problem-solving scenarios that engage students in science investigations. Although block-based programming and digital storytelling are in many ways synergistic, there is a lingering question of how to design block-based languages at an age-appropriate level to enable effective and engaging storytelling. In this work, we review design principles from prior block-based and digital storytelling systems as well as propose the design of block-based programming language features to enable the creation of rich, interactive science narratives by upper elementary students. 
    more » « less
  4. Block-based programming environments are very popular for introducing children to programming. Unfortunately, they are not accessible to many children with visual or motor impairments. In this paper we outline why block-based environments should be made accessible for these children, describe current efforts to make environments accessible, and describe how developers can incorporate accessibility into their own block-based programming environments. 
    more » « less
  5. We rely on a vast network of devices that communicate autonomously to provide many of the services we use every day. However, the enabling technologies behind the Internet of Things (IoT) are often not taught in K-12 classrooms, in part due to the need for hardware. But most teens in the United States have smartphones. Thus, we introduce PhoneIoT, a mobile app that allows students to access their smartphones programmatically over the Internet. PhoneIoT supports access to live sensor data from the device and controlling a customizable display on the phone’s screen. PhoneIoT allows students to learn the fundamental concepts of distributed computing and networked sensing using NetsBlox, a simple but powerful extension of the Snap! block-based programming environment. Because both PhoneIoT and NetsBlox are free and open-source, instructors are able to teach these advanced computer science topics even remotely without extra hardware. 
    more » « less