skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evidence for a non-supersymmetric 5d CFT from deformations of 5d SU(2) SYM
Award ID(s):
1719924
PAR ID:
10181588
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2020
Issue:
5
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this note, we discuss circle compactifications of 6d SCFTs for which a geometric M-theory construction is not known in previous literature. 
    more » « less
  2. null (Ed.)
    A bstract We use holography to study codimension-2 surface defects in 5d SCFTs engineered by ( p , q ) 5-brane webs. The three-dimensional defects are realized by D3-branes ending on the brane web. We identify the holographic representation of the defects in Type IIB AdS 6 solutions as probe D3-branes, and study conformal and non-conformal defects which, respectively, preserve one half and one quarter of the supersymmetry. For a sample of 5d SCFTs, including the T N theories, we provide explicit solutions for conformal and non-conformal defects. For the conformal defects we obtain their contribution to the free energy on S 5 . 
    more » « less
  3. We determine all 5d SCFTs upto rank three by studying RG flows of 5d KK theories. Our analysis reveals the existence of new rank one and rank two 5d SCFTs not captured by previous classifications. In addition to that, we provide for the first time a systematic and conjecturally complete classification of rank three 5d SCFTs. Our methods are based on a recently studied geometric description of 5d KK theories, thus demonstrating the utility of these geometric descriptions. It is straightforward, though computationally intensive, to extend this work and systematically classify 5d SCFTs of higher ranks (greater than or equal to four) by using the geometric description of 5d KK theories. 
    more » « less
  4. null (Ed.)