skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Understanding Climate Change Through Collaborative Versus Individual Inquiry With Constructive or Example-Based Scaffolds
We investigated a constructive and an example-based scaffold when learning from dynamic visualizations about climate change. Learners collaboratively or individually generated a diagram that represented energy flow (constructive scaffold) or observed a peer learner generating the diagram (example-based scaffold). We hypothesized that collaborative learners would benefit more from the constructive than the example-based scaffold, but that the opposite would be the case for individual learners. Seventy-one university students were randomly allocated to conditions in the 2X2 between-subjects design. Climate change understanding was measured at pre- and posttest. Preliminary results supported our hypothesis. We conclude that the constructive scaffold elicited questions that led to deep engagement in the collaborative condition, resulting in better understanding. Individual learners possibly failed to recognize crucial concepts in the constructive condition because they had questions but nobody to discuss with. They profited more from the example-based scaffold which emphasized central concepts of climate change.  more » « less
Award ID(s):
1813713
PAR ID:
10181647
Author(s) / Creator(s):
Date Published:
Journal Name:
Computersupported collaborative learning
Volume:
2
ISSN:
1573-4552
Page Range / eLocation ID:
668-671
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigated a constructive and an example-based scaffold when learning from dynamic visualizations about climate change. Learners collaboratively or individually generated a diagram that represented energy flow (constructive scaffold) or observed a peer learner generating the diagram (example-based scaffold). We hypothesized that collaborative learners would benefit more from the constructive than the example-based scaffold, but that the opposite would be the case for individual learners. Seventy-one university students were randomly allocated to conditions in the 2X2 between-subjects design. Climate change understanding was measured at pre- and posttest. Preliminary results supported our hypothesis. We conclude that the constructive scaffold elicited questions that led to deep engagement in the collaborative condition, resulting in better understanding. Individual learners possibly failed to recognize crucial concepts in the constructive condition because they had questions but nobody to discuss with. They profited more from the example-based scaffold which emphasized central concepts of climate change. 
    more » « less
  2. Lecture-based teaching paired with laboratory-based exercises is most commonly used in cybersecurity instruction. However, it focuses more on theories and models but fails to provide learners with practical problem-solving skills and opportunities to explore real-world cybersecurity challenges. Problem-based Learning (PBL) has been identified as an efficient pedagogy for many disciplines, especially engineering education. It provides learners with real-world complex problem scenarios, which encourages learners to collaborate with classmates, ask questions and develop a deeper understanding of the concepts while solving real-world cybersecurity problems. This paper describes the application of the PBL methodology to enhance professional training-based cybersecurity education. The authors developed an online laboratory environment to apply PBL with Knowledge-Graph (KG) based guidance for hands-on labs in cybersecurity training.Learners are provided access to a virtual lab environment with knowledge graph guidance to simulated real-life cybersecurity scenarios. Thus, they are forced to think independently and apply their knowledge to create cyber-attacks and defend approaches to solve problems provided to them in each lab. Our experimental study shows that learners tend to gain more enhanced learning outcomes by leveraging PBL with knowledge graph guidance, become more aware of cybersecurity and relevant concepts, and also express interest in keep learning of cybersecurity using our system. 
    more » « less
  3. This paper describes the results from an ongoing project where hands-on models and associated activities are integrated throughout an undergraduate statics course with the goal of deepening students’ conceptual understanding, scaffolding spatial skills, and therefore developing representational competence with foundational concepts such as vectors, forces, moments, and free-body diagrams. Representational competence refers to the fluency with which a subject expert can move between different representations of a concept (e.g. mathematical, symbolic, graphical, 2D vs. 3D, pictorial) as appropriate for communication, reasoning, and problem solving. This study sought to identify the characteristics of modeling activities that make them effective for all learners. Student volunteers engaged in individual interviews in which they solved problems that included 2D diagrams, 3D models, and worked calculations. Participating students had prior experience with the models and related activity sheets earlier in the course. Data was collected at the end of the quarter and the activities emphasized conceptual understanding. Thematic analysis was used to develop codes and identify themes in students’ use of the models as it relates to developing representational competence. Students used the models in a variety of ways. They wrote directly on the models, touched and gestured with the model, adjusted components, and observed the model from multiple orientations. They added new elements and deconstructed the models to feel the force or imagine how measurements would be impacted if one parameter was changed while all others held constant. In interviews students made connections to previous courses as well as previous activities and experiences with the models. In addition to using the 3D models, participants also used more than one representation (e.g. symbolic or 2D diagram) to solve problems and communicate thinking. While the use of models and manipulatives is commonplace in mechanics instruction, this work seeks to provide more nuanced information about how students use these learning aids to develop and reinforce their own understanding of key concepts. The authors hope these findings will be useful for others interested in designing and refining hands-on mechanics activities toward specific learning goals. 
    more » « less
  4. Abstract This paper describes the results from an ongoing project where hands-on models and associated activities are integrated throughout an undergraduate statics course with the goal of deepening students’ conceptual understanding, scaffolding spatial skills, and therefore developing representational competence with foundational concepts such as vectors, forces, moments, and free-body diagrams. Representational competence refers to the fluency with which a subject expert can move between different representations of a concept (e.g. mathematical, symbolic, graphical, 2D vs. 3D, pictorial) as appropriate for communication, reasoning, and problem solving. This study sought to identify the characteristics of modeling activities that make them effective for all learners. Student volunteers engaged in individual interviews in which they solved problems that included 2D diagrams, 3D models, and worked calculations. Participating students had prior experience with the models and related activity sheets earlier in the course. Data was collected at the end of the quarter and the activities emphasized conceptual understanding. Thematic analysis was used to develop codes and identify themes in students’ use of the models as it relates to developing representational competence. Students used the models in a variety of ways. They wrote directly on the models, touched and gestured with the model, adjusted components, and observed the model from multiple orientations. They added new elements and deconstructed the models to feel the force or imagine how measurements would be impacted if one parameter was changed while all others held constant. In interviews students made connections to previous courses as well as previous activities and experiences with the models. In addition to using the 3D models, participants also used more than one representation (e.g. symbolic or 2D diagram) to solve problems and communicate thinking. While the use of models and manipulatives is commonplace in mechanics instruction, this work seeks to provide more nuanced information about how students use these learning aids to develop and reinforce their own understanding of key concepts. The authors hope these findings will be useful for others interested in designing and refining hands-on mechanics activities toward specific learning goals. 
    more » « less
  5. Abstract Student-centered approaches are critical to improving outcomes in STEM courses. Collaborative learning, in particular, allows students to co-construct understanding of concepts and refine their skills in analyzing and applying information. For collaborative learning to be effective, groups must engage in productive dialogue. The work reported here characterizes the quality of dialogue during group quizzes in a first-semester organic chemistry course. The group quiz sessions were video and audio recorded. The recordings were transcribed and coded using the Interactive, Constructive, Active, Passive (ICAP) framework. The quiz prompts were analyzed using Marzano’s taxonomy. In this study, students within the group demonstrated varying degrees of interactional quality as defined by the ICAP framework. Our data also indicate that the level of constructive and interactive dialogue is highest and most consistent when prompts are at Marzano Level 3 or higher. Marzano Level 3 prompts required students to compare and contrast concepts or extend their understanding of concepts by developing an analogy. Any benefit derived from collaborative learning depends on the quality of dialogue during the group discussion. Implications of these results for research and teaching are offered. 
    more » « less