skip to main content


Title: Palaeocupressinoxylon uniseriale n. gen. n. sp., a gymnospermous wood from the upper Permian of Central Taodonggou, southern Bogda Mountains, northwestern China
A silicified wood, Palaeocupressinoxylon uniseriale n. gen. n. sp., is described from the upper Permian of the Central Taodonggou section,Turpan–Hami Basin, Xinjiang Uygur Autonomous Region, northwestern China. Multidisciplinary data including U–Pb ID–TIMS zircon dating,vertebrate and invertebrate biostratigraphic, and cyclostratigraphic correlation from current and previous studies indicate that the fossil bearinginterval is Wuchiapingian (late Permian) in age. The pycnoxylic wood consists of thick-walled tracheids and parenchymatous rays. It is characterizedby separated uniseriate radial tracheidal pits, uniseriate ray cells, and cupressoid cross-field pitting. The absence of growth rings in the wood,together with the occurrence of Argillisols, Gleysols, and Histosols above and below the fossil interval, suggests that a stable landscape and aperennially humid climate prevailed in the Taodonggou area during the Wuchiapingian.  more » « less
Award ID(s):
1714749
NSF-PAR ID:
10181756
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Palaeoworld
Volume:
29
ISSN:
1871-174X
Page Range / eLocation ID:
117-125
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A silicified trunk,Zhuotingoxylon liaoiWan, Yang, Wang, Liu et Wang gen. et sp. nov., is described from the uppermost part of Guodikeng Formation in South Taodonggou section, Turpan–Hami Basin, Xinjiang Uygur Autonomous Region, northwestern China. It is characterized by a solid pith, endarch primary xylem and pycnoxylic wood. The pith is composed of parenchyma and sclereids. Radial walls of primary xylem tracheids have spiral and scalariform thickenings. Secondary xylem consists of thick‐walled tracheids and parenchymatous rays. Uniseriate rounded pits with oval apertures are distributed on radial tracheidal walls separately. Cell walls of rays are homogeneous and smooth. Rays are 1–10 cells high in tangential section. Cross‐field pits are cupressoid. There are 1–4 bordered pits with slit‐like to oval apertures in each cross‐field. Based on the anatomical features of the pith and xylems, it is proposed that the new stem has a coniferous affinity. The new fossil stem adds to the knowledge of vascular plant diversity close to the Permian–Triassic boundary.

     
    more » « less
  2. null (Ed.)
    ABSTRACT A distinctive burrow form, Reniformichnus australis n. isp., is described from strata immediately overlying and transecting the end-Permian extinction (EPE) horizon in the Sydney Basin, eastern Australia. Although a unique excavator cannot be identified, these burrows were probably produced by small cynodonts based on comparisons with burrows elsewhere that contain body fossils of the tracemakers. The primary host strata are devoid of plant remains apart from wood and charcoal fragments, sparse fungal spores, and rare invertebrate traces indicative of a very simplified terrestrial ecosystem characterizing a ‘dead zone' in the aftermath of the EPE. The high-paleolatitude (∼ 65–75°S) setting of the Sydney Basin, together with its higher paleoprecipitation levels and less favorable preservational potential, is reflected by a lower diversity of vertebrate fossil burrows and body fossils compared with coeval continental interior deposits of the mid-paleolatitude Karoo Basin, South Africa. Nevertheless, these burrows reveal the survivorship of small tetrapods in considerable numbers in the Sydney Basin immediately following the EPE. A fossorial lifestyle appears to have provided a selective advantage for tetrapods enduring the harsh environmental conditions that arose during the EPE. Moreover, high-paleolatitude and maritime settings may have provided important refugia for terrestrial vertebrates at a time of lethal temperatures at low-latitudes and aridification of continental interiors. 
    more » « less
  3. Abstract

    The end-Permian extinction (EPE) has been considered to be contemporaneous on land and in the oceans. However, re-examined floristic records and new radiometric ages from Gondwana indicate a nuanced terrestrial ecosystem response to EPE global change. Paleosol geochemistry and climate simulations indicate paleoclimate change likely caused the demise of the widespread glossopterid ecosystems in Gondwana. Here, we evaluate the climate response of plants to the EPE via dendrochronology snapshots to produce annual-resolution records of tree-ring growth for a succession of late Permian and early Middle Triassic fossil forests from Antarctica. Paleosol geochemistry indicates a shift in paleoclimate towards more humid conditions in the Early and early Middle Triassic relative to the late Permian. Paleosol morphology, however, supports inferences of a lack of forested ecosystems in the Early Triassic. The plant responses to this paleoclimate change were accompanied by enhanced stress during the latest Permian as determined by high-resolution paleoclimate analysis of wood growth intervals. These results suggest that paleoclimate change during the late Permian exerted significant stress on high-latitude forests, consistent with the hypothesis that climate change was likely the primary driver of the extinction of the glossopterid ecosystems.

     
    more » « less
  4. Stratigraphic sections in the Bogda Mountains, NW China, provide detailed records of late Permian–Early Triassic terrestrial paleoenvironmental and paleoclimatic evolution at the paleo-mid-latitude of NE Pangea. The sections are located in the Tarlong-Taodonggou, Dalongkou, and Zhaobishan areas, ~100 km apart, and ~5000 m in total thickness. An age model was constructed using seven high-resolution U-Pb zircon CA-TIMS dates in the Tarlong-Taodonggou sections and projected to sections in two other areas to convert the litho- and cyclo-stratigraphy into a chronostratigraphy. Sediments were deposited in braided and meandering streams, and lacustrine deltaic and lakeplain-littoral environments. A cyclostratigraphy was established on the basis of repetitive environmental changes for high-order cycles, stacking patterns of high-order cycles, and long-term climatic and tectonic trends for low-order cycles (LC). Sedimentary evidence from the upper Wuchiapingian–mid Induan Wutonggou LC indicates that the climate was generally humid-subhumid and gradually became variable toward a seasonally dry condition in the early Induan. Lush vegetation had persisted across the Permo–Triassic boundary into the early Induan. A subhumid-semiarid condition prevailed during the deposition of mid Induan–lower Olenekian Jiucaiyuan and lower Olenekian Shaofanggou LCs. These three LCs are largely continuous and separated by conformities and diastems. Intra- and inter-graben stratigraphic variability is reflected by variations in thickness, depositional system, and average sedimentation rate, and results in variable spatial and temporal stratigraphic resolution. Such stratigraphic variability is mainly controlled by paleogeographic location, depocenter shift, and episodic uplift and subsidence in the source areas and catchment basin. A changeover of plant communities occurred during the early Induan, postdating the end-Permian marine mass extinction. However, riparian vegetation and upland forests were still present from the mid Induan to early Olenekian, and served as primary food source for terrestrial ecosystems, including vertebrates. Correlation of the vascular plant evolutionary history from the latest Changhsingian to early Induan in the Bogda Mountains with those reported from Australia and south China indicates a diachronous floral changeover on Pangea. The late Permian–Early Triassic litho-, cyclo- and chrono-stratigraphies, constrained by the age model, providesfoundation for future studies on the evolution of continental sedimentary, climatic, biologic, and ecological systems in the Bogda region. It also provides a means to correlate terrestrial events in the mid-paleolatitudes with marine and nonmarine records in the other parts of the world. 
    more » « less
  5. Stratigraphic sections in the Bogda Mountains, NW China, provide detailed records of late Permian–Early Triassic terrestrial paleoenvironmental and paleoclimatic evolution at the paleo-mid-latitude of NE Pangea. The sections are located in the Tarlong-Taodonggou, Dalongkou, and Zhaobishan areas, ~100 km apart, and ~5000 m in total thickness. An age model was constructed using seven high-resolution U-Pb zircon CA-TIMS dates in the Tarlong-Taodonggou sections and projected to sections in two other areas to convert the litho- and cyclo-stratigraphy into a chronostratigraphy. Sediments were deposited in braided and meandering streams, and lacustrine deltaic and lakeplain-littoral environments. A cyclostratigraphy was established on the basis of repetitive environmental changes for high-order cycles, stacking patterns of high-order cycles, and long-term climatic and tectonic trends for low-order cycles (LC). Sedimentary evidence from the upper Wuchiapingian–mid Induan Wutonggou LC indicates that the climate was generally humid-subhumid and gradually became variable toward a seasonally dry condition in the early Induan. Lush vegetation had persisted across the Permo–Triassic boundary into the early Induan. A subhumid-semiarid condition prevailed during the deposition of mid Induan–lower Olenekian Jiucaiyuan and lower Olenekian Shaofanggou LCs. These three LCs are largely continuous and separated by conformities and diastems. Intra- and inter-graben stratigraphic variability is reflected by variations in thickness, depositional system, and average sedimentation rate, and results in variable spatial and temporal stratigraphic resolution. Such stratigraphic variability is mainly controlled by paleogeographic location, depocenter shift, and episodic uplift and subsidence in the source areas and catchment basin. A changeover of plant communities occurred during the early Induan, postdating the end-Permian marine mass extinction. However, riparian vegetation and upland forests were still present from the mid Induan to early Olenekian, and served as primary food source for terrestrial ecosystems, including vertebrates. Correlation of the vascular plant evolutionary history from the latest Changhsingian to early Induan in the Bogda Mountains with those reported from Australia and south China indicates a diachronous floral changeover on Pangea. The late Permian–Early Triassic litho-, cyclo- and chrono-stratigraphies, constrained by the age model, provides a foundation for future studies on the evolution of continental sedimentary, climatic, biologic, and ecological systems in the Bogda region. It also provides a means to correlate terrestrial events in the mid-paleolatitudes with marine and nonmarine records in the other parts of the world. 
    more » « less