A silicified trunk,Zhuotingoxylon liaoiWan, Yang, Wang, Liu et Wang gen. et sp. nov., is described from the uppermost part of Guodikeng Formation in South Taodonggou section, Turpan–Hami Basin, Xinjiang Uygur Autonomous Region, northwestern China. It is characterized by a solid pith, endarch primary xylem and pycnoxylic wood. The pith is composed of parenchyma and sclereids. Radial walls of primary xylem tracheids have spiral and scalariform thickenings. Secondary xylem consists of thick‐walled tracheids and parenchymatous rays. Uniseriate rounded pits with oval apertures are distributed on radial tracheidal walls separately. Cell walls of rays are homogeneous and smooth. Rays are 1–10 cells high in tangential section. Cross‐field pits are cupressoid. There are 1–4 bordered pits with slit‐like to oval apertures in each cross‐field. Based on the anatomical features of the pith and xylems, it is proposed that the new stem has a coniferous affinity. The new fossil stem adds to the knowledge of vascular plant diversity close to the Permian–Triassic boundary.
more »
« less
Palaeocupressinoxylon uniseriale n. gen. n. sp., a gymnospermous wood from the upper Permian of Central Taodonggou, southern Bogda Mountains, northwestern China
A silicified wood, Palaeocupressinoxylon uniseriale n. gen. n. sp., is described from the upper Permian of the Central Taodonggou section,Turpan–Hami Basin, Xinjiang Uygur Autonomous Region, northwestern China. Multidisciplinary data including U–Pb ID–TIMS zircon dating,vertebrate and invertebrate biostratigraphic, and cyclostratigraphic correlation from current and previous studies indicate that the fossil bearinginterval is Wuchiapingian (late Permian) in age. The pycnoxylic wood consists of thick-walled tracheids and parenchymatous rays. It is characterizedby separated uniseriate radial tracheidal pits, uniseriate ray cells, and cupressoid cross-field pitting. The absence of growth rings in the wood,together with the occurrence of Argillisols, Gleysols, and Histosols above and below the fossil interval, suggests that a stable landscape and aperennially humid climate prevailed in the Taodonggou area during the Wuchiapingian.
more »
« less
- Award ID(s):
- 1714749
- PAR ID:
- 10181756
- Date Published:
- Journal Name:
- Palaeoworld
- Volume:
- 29
- ISSN:
- 1871-174X
- Page Range / eLocation ID:
- 117-125
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Permian-Triassic time is a significant stage in the Paleozoic continental amalgamation and Cenozoic orogenic reactivation of southern Central Asian Orogenic Belt (CAOB). Field, petrographic, and detrital zircon U-Pb geochronological data of the uppermost Carboniferous–Lower Triassic sandstones from 3 sections in Bogda Mountains, greater Turpan-Junggar basin, NW China, are used to decipher the tectonic history. The sections are Tarlong-Taodonggou (TT) and Zhaobishan (ZBS) in the south and Dalongkou (DLK) in the north, 100 km apart and ~7,000 m in total thickness. Four petrofacies of 229 sandstones and U-Pb dates of 3505 zircons of 35 sandstones form the basis for interpretation. During Gzhelian–Asselian, andesite and basalt are the major source lithologies in TT. Zircon ages peak at ~300 Ma. During Sakmarian–Kungurian, basalt and andesite are the main source rocks in TT and ZBS; and zircon ages of both areas peak at ~300 Ma. The Roadian–Wordian is represented by a regional unconformity. The Guadalupian source lithology and zircon date show a major change. Andesite is the common and rhyolite and basalt the minor source lithologies for TT and DLK; but rhyolite for ZBS. A unimodal peak at ~305 Ma occurs in TT; but two peaks at 305 and 455 Ma with common Precambrian dates in ZBS; and peaks of 310–295 Ma in DLK. During Wuchiapingian–mid Olenekian, andesite and rhyolite are the common source lithologies for TT and DLK; but rhyolite as the primary volcanic lithology for ZBS. In TT, Wuchiapingian- Induan samples have a major age peak at ~300 Ma, and an Olenekian sample has two peaks at ~300 and ~450 Ma. In ZBS, the age pattern is similar to that of the Guadalupian sample. In DLK, samples have a major peak at ~310 Ma and a minor peak at ~450 Ma. The comparable age clusters identified by multi-dimensional scaling indicate that North Tianshan is the source for TT and ZBS during the latest Carboniferous–early Permian. But in mid Permian, south Central Tianshan became the main source solely to ZBS. During late Permian–Early Triassic, both north and central Tianshan became the common sources to all three areas due to enhanced denudation. The source change in mid-Permian across a regional unconformity is synchronous with Paleo-Asian Ocean closure and arc-continent and continent-continent collisions, which occurred along the southern margin of Turpan- Junggar basin no later than Guadalupian.more » « less
-
Stratigraphic sections in the Bogda Mountains, NW China, provide detailed records of late Permian–Early Triassic terrestrial paleoenvironmental and paleoclimatic evolution at the paleo-mid-latitude of NE Pangea. The sections are located in the Tarlong-Taodonggou, Dalongkou, and Zhaobishan areas, ~100 km apart, and ~5000 m in total thickness. An age model was constructed using seven high-resolution U-Pb zircon CA-TIMS dates in the Tarlong-Taodonggou sections and projected to sections in two other areas to convert the litho- and cyclo-stratigraphy into a chronostratigraphy. Sediments were deposited in braided and meandering streams, and lacustrine deltaic and lakeplain-littoral environments. A cyclostratigraphy was established on the basis of repetitive environmental changes for high-order cycles, stacking patterns of high-order cycles, and long-term climatic and tectonic trends for low-order cycles (LC). Sedimentary evidence from the upper Wuchiapingian–mid Induan Wutonggou LC indicates that the climate was generally humid-subhumid and gradually became variable toward a seasonally dry condition in the early Induan. Lush vegetation had persisted across the Permo–Triassic boundary into the early Induan. A subhumid-semiarid condition prevailed during the deposition of mid Induan–lower Olenekian Jiucaiyuan and lower Olenekian Shaofanggou LCs. These three LCs are largely continuous and separated by conformities and diastems. Intra- and inter-graben stratigraphic variability is reflected by variations in thickness, depositional system, and average sedimentation rate, and results in variable spatial and temporal stratigraphic resolution. Such stratigraphic variability is mainly controlled by paleogeographic location, depocenter shift, and episodic uplift and subsidence in the source areas and catchment basin. A changeover of plant communities occurred during the early Induan, postdating the end-Permian marine mass extinction. However, riparian vegetation and upland forests were still present from the mid Induan to early Olenekian, and served as primary food source for terrestrial ecosystems, including vertebrates. Correlation of the vascular plant evolutionary history from the latest Changhsingian to early Induan in the Bogda Mountains with those reported from Australia and south China indicates a diachronous floral changeover on Pangea. The late Permian–Early Triassic litho-, cyclo- and chrono-stratigraphies, constrained by the age model, provides a foundation for future studies on the evolution of continental sedimentary, climatic, biologic, and ecological systems in the Bogda region. It also provides a means to correlate terrestrial events in the mid-paleolatitudes with marine and nonmarine records in the other parts of the world.more » « less
-
Brinkhuis, Henk (Ed.)Searching for land refugia becomes imperative for human survival during the hypothetical sixth mass extinction. Studying past comparable crises can offer insights, but there is no fossil evidence of diverse megafloral ecosystems surviving the largest Phanerozoic biodiversity crisis. Here, we investigated palynomorphs, plant, and tetrapod fossils from the Permian-Triassic South Taodonggou Section in Xinjiang, China. Our fossil records, calibrated by a high-resolution age model, reveal the presence of vibrant regional gymnospermous forests and fern fields, while marine organisms experienced mass extinction. This refugial vegetation was crucial for nourishing the substantial influx of surviving animals, thereby establishing a diverse terrestrial ecosystem approximately 75,000 years after the mass extinction. Our findings contradict the widely held belief that restoring terrestrial ecosystem functional diversity to pre-extinction levels would take millions of years. Our research indicates that moderate hydrological fluctuations throughout the crisis sustained this refugium, likely making it one of the sources for the rapid radiation of terrestrial life in the early Mesozoic.more » « less
-
Provenance of uppermost Carboniferous–Lower Triassic sandstones, Bogda Mountains, NW China: implication on late Paleozoic tectonic history of southern Central Asian Orogenic Belt The Permian-Triassic time is a critical stage in the Paleozoic continental amalgamation and Cenozoic orogenic reactivation of southern Central Asian Orogenic Belt (CAOB). Field, petrographic and detrital zircon U-Pb geochronological data of the uppermost Carboniferous– Lower Triassic sandstones from 3 sections in Bogda Mountains, greater Turpan-Junggar basin, NW China, are used to decipher the tectonic history. They are Tarlong- Taodonggou (TT) and Zhaobishan (ZBS) in the south and Dalongkou (DLK) in the north, 100 km apart and ~7,000 m in total thickness. Four petrofacies of 229 sandstones are defined using the abundance of volcanic, sedimentary, and metamorphic (with polycrystalline quartz) lithics. Petrofacies A (Lv73Ls21(Qp+Lm)6) contains mainly volcanic lithics, indicating a volcanic arc as the main source. Petrofacies B (Lv14Ls41(Qp+Lm)45) and Petrofacies C (Lv38Ls14(Qp+Lm)48) contain mixed sedimentary, metamorphic, and volcanic lithics, indicating multiple sources. Petrofacies D (Lv11Ls82(Qp+Lm)7) contains mainly sedimentary lithics with a trace amount of volcanic and metamorphic lithics, indicating local rift-shoulder sedimentary sources. Additionally, the U-Pb dates of 3505 detrital zircon grains of 35 sandstones were analyzed. The predominant Paleozoic zircon grains yield major age populations at ca. 360–280 Ma and 485–385 Ma. Precambrian dates are present, ranging from 542 Ma to 3329 Ma. During Gzhelian–Asselian, andesite and basalt are the major source lithologies in TT. Zircon ages peak at ~300 Ma. During Sakmarian–Kungurian, basalt and andesite are the main source rocks in TT and ZBS; and zircon ages of both areas peak at ~300 Ma. The Roadian–Wordian is probably represented by a regional unconformity. The Guadalupian source lithology and zircon date show a major change. Andesite is the common and rhyolite and basalt minor source lithologies for TT and DLK; but rhyolite significant for ZBS. A unimodal peak at ~305 Ma occurs in TT; two peaks at 305 and 455 Ma with common Precambrian dates in ZBS; and peaks of 310–295 Ma in DLK. During Wuchiapingian–mid Olenekian, andesite and rhyolite are the common source lithologies for TT and DLK, and rhyolite as the primary volcanic lithology for ZBS. In TT, Wuchiapingian-Induan samples have a major age peak at ~300 Ma, and an Olenekian sample has two peaks at ~300 and ~450 Ma. In ZBS, the age pattern is similar to that of the Guadalupian sample. In DLK, samples have a major age peak at ~310 Ma and a minor peak at ~450 Ma. The comparable age clusters identified by multi-dimensional scaling indicate that North Tianshan is the source for TT and ZBS during the latest Carboniferous–early Permian. But south Central Tianshan became the main source solely to ZBS. During late Permian–Early Triassic, both north and central Tianshan became the common sources to the three areas due to enhanced denudation. The source change in mid-Permian across a regional unconformity is synchronous with Paleo-Asian Ocean closure and arc-continent and continent-continent collisions, which occurred no later than Guadalupian.more » « less
An official website of the United States government

