The end-Cretaceous event was catastrophic for terrestrial communities worldwide, yet its long-lasting effect on tropical forests remains largely unknown. We quantified plant extinction and ecological change in tropical forests resulting from the end-Cretaceous event using fossil pollen (>50,000 occurrences) and leaves (>6000 specimens) from localities in Colombia. Late Cretaceous (Maastrichtian) rainforests were characterized by an open canopy and diverse plant–insect interactions. Plant diversity declined by 45% at the Cretaceous–Paleogene boundary and did not recover for ~6 million years. Paleocene forests resembled modern Neotropical rainforests, with a closed canopy and multistratal structure dominated by angiosperms. The end-Cretaceous event triggered a long interval of low plant diversity in the Neotropics and the evolutionary assembly of today’s most diverse terrestrial ecosystem. 
                        more » 
                        « less   
                    This content will become publicly available on March 14, 2026
                            
                            Refugium amidst ruins: Unearthing the lost flora that escaped the end-Permian mass extinction
                        
                    
    
            Searching for land refugia becomes imperative for human survival during the hypothetical sixth mass extinction. Studying past comparable crises can offer insights, but there is no fossil evidence of diverse megafloral ecosystems surviving the largest Phanerozoic biodiversity crisis. Here, we investigated palynomorphs, plant, and tetrapod fossils from the Permian-Triassic South Taodonggou Section in Xinjiang, China. Our fossil records, calibrated by a high-resolution age model, reveal the presence of vibrant regional gymnospermous forests and fern fields, while marine organisms experienced mass extinction. This refugial vegetation was crucial for nourishing the substantial influx of surviving animals, thereby establishing a diverse terrestrial ecosystem approximately 75,000 years after the mass extinction. Our findings contradict the widely held belief that restoring terrestrial ecosystem functional diversity to pre-extinction levels would take millions of years. Our research indicates that moderate hydrological fluctuations throughout the crisis sustained this refugium, likely making it one of the sources for the rapid radiation of terrestrial life in the early Mesozoic. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2317598
- PAR ID:
- 10634340
- Editor(s):
- Brinkhuis, Henk
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Science Advances
- Edition / Version:
- 1
- Volume:
- 11
- Issue:
- 11
- ISSN:
- 2375-2548
- Page Range / eLocation ID:
- 1-10
- Subject(s) / Keyword(s):
- Paleobotany Permian China
- Format(s):
- Medium: X Size: 1.7Mb Other: pdf
- Size(s):
- 1.7Mb
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The late Quaternary is characterized by the extinction of many terrestrial megafauna, which included tortoises (Family: Testudinidae). However, limited information is available on how extinction shaped the phenotype of surviving taxa. Here, based on a global dataset of straight carapace length, we investigate the temporal variation, spatial distribution and evolution of tortoise body size over the past 23 million years, thereby capturing the effects of Quaternary extinctions in this clade. We found a significant change in body size distribution characterized by a reduction of both mean body size and maximum body size of extant tortoises relative to fossil taxa. This reduction of body size occurred earlier in mainland (Early Pleistocene 2.588–0.781 Ma) than in island tortoises (Late Pleistocene/Holocene 0.126–0 Ma). Despite contrasting body size patterns between fossil and extant taxa on a spatial scale, tortoise body size showed limited variation over time until this decline. Body size is a fundamental functional trait determining many aspects of species ecologies, with large tortoises playing key roles as ecosystem engineers. As such, the transition from larger sized to smaller sized classes indicated by our findings likely resulted in the homogenization of tortoises' ecological functions and diminished the role of tortoises in structuring the vegetation community.more » « less
- 
            null (Ed.)The Earth has been beset by many crises during its history, and yet comparing the ecological impacts of these mass extinctions has been difficult. Key questions concern the kinds of species that go extinct and survive, how communities rebuild in the post-extinction recovery phase, and especially how the scaling of events affects these processes. Here, we explore ecological impacts of terrestrial and freshwater ecosystems in three mass extinctions through the mid-Phanerozoic, a span of 121 million years (295–174 Ma). This critical duration encompasses the largest mass extinction of all time, the Permian–Triassic (P–Tr) and is flanked by two smaller crises, the Guadalupian–Lopingian (G–L) and Triassic–Jurassic (T–J) mass extinctions. Palaeocommunity dynamics modelling of 14 terrestrial and freshwater communities through a long sedimentary succession from the lower Permian to the lower Jurassic in northern Xinjiang, northwest China, shows that the P–Tr mass extinction differed from the other two in two ways: (i) ecological recovery from this extinction was prolonged and the three post-extinction communities in the Early Triassic showed low stability and highly variable and unpredictable responses to perturbation primarily following the huge losses of species, guilds and trophic space; and (ii) the G–L and T–J extinctions were each preceded by low-stability communities, but post-extinction recovery was rapid. Our results confirm the uniqueness of the P–Tr mass extinction and shed light on the trophic structure and ecological dynamics of terrestrial and freshwater ecosystems across the three mid-Phanerozoic extinctions, and how complex communities respond to environmental stress and how communities recovered after the crisis. Comparisons with the coeval communities from the Karoo Basin, South Africa show that geographically and compositionally different communities of terrestrial ecosystems were affected in much the same way by the P–Tr extinction.more » « less
- 
            Abstract Resilient landscapes have helped maintain terrestrial biodiversity during periods of climatic and environmental change. Identifying the tempo and mode of landscape transitions and the drivers of landscape resilience is critical to maintaining natural systems and preserving biodiversity given today's rapid climate and land use changes. However, resilient landscapes are difficult to recognize on short time scales, as perturbations are challenging to quantify and ecosystem transitions are rare. Here we analyze two components of North American landscape resilience over 20,000 years: residence time and recovery time. To evaluate landscape dynamics, we use plant biomes, preserved in the fossil pollen record, to examine how long a biome type persists at a given site (residence time) and how long it takes for the biome at that site to reestablish following a transition (recovery time). Biomes have a median residence time of only 230–460 years. Only 64% of biomes recover their original biome type, but recovery time is 140–290 years. Temperatures changing faster than 0.5°C per 500 years result in much reduced residence times. Following a transition, biodiverse biomes reestablish more quickly. Landscape resilience varies through time. Notably, short residence times and long recovery times directly preceded the end‐Pleistocene megafauna extinction, resulting in regional destabilization, and combining with more proximal human impacts to deliver a one‐two punch to megafauna species. Our work indicates that landscapes today are once again exhibiting low resilience, foreboding potential extinctions to come. Conservation strategies focused on improving both landscape and ecosystem resilience by increasing local connectivity and targeting regions with high richness and diverse landforms can mitigate these extinction risks.more » « less
- 
            The Plio-Pleistocene regional mass extinction of molluscan fauna of Florida and the US Atlantic coastal plain was followed by a period of rapid origination, resulting in similar modern regional species richness. Predator and prey relationships were impacted by high extinction rates across all taxa. Previous studies have suggested that the extinction is associated with a possible system-wide decline in predation intensity, but data from additional prey species both prior to and after the extinctions are needed to determine how general this pattern may be. We examined predatory trace fossils on turritellid gastropods, a clade which experienced substantial extinction during this time. Overall rates of peeling predation on turritellid gastropods across the extinction boundary decreased – with turritellid species having an average peel-repair frequency of 0.41 in the Plio-Pleistocene compared to a frequency of 0.16 in modern samples. However, in the two surviving lineages, Turritella perexilis and Torcula exoleta, peel-repair frequency was similar in the Plio-Pleistocene samples and in modern samples. Fossil T. perexilis had a peel frequency of 0.26, compared to the modern samples’ peeling frequency of 0.14. Fossil T. perattenuata had a peeling frequency of 0.18, while its descendant, T. exoleta, had a peeling frequency of 0.17. Additionally, the incidence of multiple attacks in modern samples is markedly lower. While a majority (89%) of turritellid species went extinct during this event, most fossil species had higher peel-repair frequencies than fossils of the surviving lineages. In contrast with peeling frequency, the frequency of drilling predation on modern descendants is higher than their fossil ancestors (0.21 vs 0.02 and 0.14 vs. 0.11 for T. exoleta/T. perattenuata and T. perexilis, respectively). Across all species, drilling increased from an average of 0.11 in the Plio-Pleistocene samples to 0.19 in modern samples. These results suggest that as turritellid prey diversity decreased, predators may have adapted to attack surviving species, or these lineages may have become more vulnerable to their predators.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
