skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cutset Bayesian Networks: A New Representation for Learning Rao-Blackwellised Graphical Models
Recently there has been growing interest in learning probabilistic models that admit poly-time inference called tractable probabilistic models from data. Although they generalize poorly as compared to intractable models, they often yield more accurate estimates at prediction time. In this paper, we seek to further explore this trade-off between generalization performance and inference accuracy by proposing a novel, partially tractable representation called cutset Bayesian networks (CBNs). The main idea in CBNs is to partition the variables into two subsets X and Y, learn a (intractable) Bayesian network that represents P(X) and a tractable conditional model that represents P(Y|X). The hope is that the intractable model will help improve generalization while the tractable model, by leveraging Rao-Blackwellised sampling which combines exact inference and sampling, will help improve the prediction accuracy. To compactly model P(Y|X), we introduce a novel tractable representation called conditional cutset networks (CCNs) in which all conditional probability distributions are represented using calibrated classifiers—classifiers which typically yield higher quality probability estimates than conventional classifiers. We show via a rigorous experimental evaluation that CBNs and CCNs yield more accurate posterior estimates than their tractable as well as intractable counterparts.  more » « less
Award ID(s):
1652835
PAR ID:
10181781
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence
Page Range / eLocation ID:
5751 to 5757
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Active learning methods, like uncertainty sampling, combined with probabilistic prediction techniques have achieved success in various problems like image classification and text classification. For more complex multivariate prediction tasks, the relationships between labels play an important role in designing structured classifiers with better performance. However, computational time complexity limits prevalent probabilistic methods from effectively supporting active learning. Specifically, while non-probabilistic methods based on structured support vector ma-chines can be tractably applied to predicting cuts and bipartite matchings, conditional random fields are intractable for these structures. We propose an adversarial approach for active learning with structured prediction domains that is tractable for cuts and matching. We evaluate this approach algorithmically in two important structured prediction problems: multi-label classification and object tracking in videos. We demonstrate better accuracy and computational efficiency for our proposed method. 
    more » « less
  2. There has been growing interest in the AI community for precise uncertainty quantification. Conditional density models f(y|x), where x represents potentially high-dimensional features, are an integral part of uncertainty quantification in prediction and Bayesian inference. However, it is challenging to assess conditional density estimates and gain insight into modes of failure. While existing diagnostic tools can determine whether an approximated conditional density is compatible overall with a data sample, they lack a principled framework for identifying, locating, and interpreting the nature of statistically significant discrepancies over the entire feature space. In this paper, we present rigorous and easy-to-interpret diagnostics such as (i) the “Local Coverage Test” (LCT), which distinguishes an arbitrarily misspecified model from the true conditional density of the sample, and (ii) “Amortized Local P-P plots” (ALP) which can quickly provide interpretable graphical summaries of distributional differences at any location x in the feature space. Our validation procedures scale to high dimensions and can potentially adapt to any type of data at hand. We demonstrate the effectiveness of LCT and ALP through a simulated experiment and applications to prediction and parameter inference for image data. 
    more » « less
  3. Estimating and disentangling epistemic uncertainty, uncertainty that is reducible with more training data, and aleatoric uncertainty, uncertainty that is inherent to the task at hand, is critically important when applying machine learning to highstakes applications such as medical imaging and weather forecasting. Conditional diffusion models’ breakthrough ability to accurately and efficiently sample from the posterior distribution of a dataset now makes uncertainty estimation conceptually straightforward: One need only train and sample from a large ensemble of diffusion models. Unfortunately, training such an ensemble becomes computationally intractable as the complexity of the model architecture grows. In this work we introduce a new approach to ensembling, hyper-diffusion models (HyperDM), which allows one to accurately estimate both epistemic and aleatoric uncertainty with a single model. Unlike existing single-model uncertainty methods like Monte-Carlo dropout and Bayesian neural networks, HyperDM offers prediction accuracy on par with, and in some cases superior to, multi-model ensembles. Furthermore, our proposed approach scales to modern network architectures such as Attention U-Net and yields more accurate uncertainty estimates compared to existing methods. We validate our method on two distinct real-world tasks: x-ray computed tomography reconstruction and weather temperature forecasting. Source code is publicly available at https://github.com/matthewachan/hyperdm. 
    more » « less
  4. We consider the problem of non-parametric Conditional Independence testing (CI testing) for continuous random variables. Given i.i.d samples from the joint distribution f (x, y, z) of continuous random vectors X, Y and Z, we determine whether X is independent Y |Z. We approach this by converting the conditional independence test into a classification problem. This allows us to harness very powerful classifiers like gradient-boosted trees and deep neural networks. These models can handle complex probability distributions and allow us to perform significantly better compared to the prior state of the art, for high-dimensional CI testing. The main technical challenge in the classification problem is the need for samples from the conditional product distribution fCI(x,y,z) = f(x|z)f(y|z)f(z) – the joint distribution if and only if X is independent Y |Z. – when given access only to i.i.d. samples from the true joint distribution f (x, y, z). To tackle this problem we propose a novel nearest neighbor bootstrap procedure and theoretically show that our generated samples are indeed close to f^{CI} in terms of total variational distance. We then develop theoretical results regarding the generalization bounds for classification for our problem, which translate into error bounds for CI testing. We provide a novel analysis of Rademacher type classification bounds in the presence of non-i.i.d near- independent samples. We empirically validate the performance of our algorithm on simulated and real datasets and show performance gains over previous methods. 
    more » « less
  5. Abstract Performance of classifiers is often measured in terms of average accuracy on test data. Despite being a standard measure, average accuracy fails in characterising the fit of the model to the underlying conditional law of labels given the features vector (Y∣X), e.g. due to model misspecification, over fitting, and high-dimensionality. In this paper, we consider the fundamental problem of assessing the goodness-of-fit for a general binary classifier. Our framework does not make any parametric assumption on the conditional law Y∣X and treats that as a black-box oracle model which can be accessed only through queries. We formulate the goodness-of-fit assessment problem as a tolerance hypothesis testing of the form H0:E[Df(Bern(η(X))‖Bern(η^(X)))]≤τ where Df represents an f-divergence function, and η(x), η^(x), respectively, denote the true and an estimate likelihood for a feature vector x admitting a positive label. We propose a novel test, called Goodness-of-fit with Randomisation and Scoring Procedure (GRASP) for testing H0, which works in finite sample settings, no matter the features (distribution-free). We also propose model-X GRASP designed for model-X settings where the joint distribution of the features vector is known. Model-X GRASP uses this distributional information to achieve better power. We evaluate the performance of our tests through extensive numerical experiments. 
    more » « less