skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Automated Test Generation for Trojan Detection using Delay-based Side Channel Analysis
Side-channel analysis is widely used for hardware Trojan detection in integrated circuits by analyzing various side-channel signatures, such as timing, power and path delay. Existing delay-based side-channel analysis techniques have two major bottlenecks: (i) they are not suitable in detecting Trojans since the delay difference between the golden design and a Trojan inserted design is negligible, and (ii) they are not effective in creating robust delay signatures due to reliance on random and ATPG based test patterns. In this paper, we propose an efficient test generation technique to detect Trojans using delay-based side channel analysis. This paper makes two important contributions. (1) We propose an automated test generation algorithm to produce test patterns that are likely to activate trigger conditions, and change critical paths. Compared to existing approaches where delay difference is solely based on extra gates from a small Trojan, the change of critical paths by our approach will lead to significant difference in path delay. (2) We propose a fast and efficient reordering technique to maximize the delay deviation between the golden design and Trojan inserted design. Experimental results demonstrate that our approach significantly outperforms state-of-the-art approaches that rely on ATPG or random test patterns for delay-based side-channel analysis.  more » « less
Award ID(s):
1908131
PAR ID:
10182322
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Design Automation & Test in Europe (DATE)
Page Range / eLocation ID:
1031 to 1036
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Reliability and trustworthiness are dominant factors in designing System-on-Chips (SoCs) for a variety of applications. Malicious implants, such as hardware Trojans, can lead to undesired information leakage or system malfunction. To ensure trustworthy computing, it is critical to develop efficient Trojan detection techniques. While existing delay-based side-channel analysis is promising, it is not effective due to two fundamental limitations: (i) The difference in path delay between the golden design and Trojan inserted design is negligible compared with environmental noise and process variations. (ii) Existing approaches rely on manually crafted rules for test generation, and require a large number of simulations, making it impractical for industrial designs. In this paper, we propose a novel test generation method using reinforcement learning for delay-based Trojan detection. This paper makes three important contributions. 1) Unlike existing methods that rely on the delay difference of a few gates, our proposed approach utilizes critical path analysis to generate test vectors that can maximize the side-channel sensitivity. 2) To the best of our knowledge, our approach is the first attempt in applying reinforcement learning for efficient test generation to detect Trojans using delay-based analysis. 3) Our experimental results demonstrate that our method can significantly improve both side-channel sensitivity (59% on average) and test generation time (17x on average) compared to state-of-the-art test generation techniques. 
    more » « less
  2. null (Ed.)
    Detection of hardware Trojans is vital to ensure the security and trustworthiness of System-on-Chip (SoC) designs. Side-channel analysis is effective for Trojan detection by analyzing various side-channel signatures such as power, current, and delay. In this article, we propose an efficient test generation technique to facilitate side-channel analysis utilizing dynamic current. While early work on current-aware test generation has proposed several promising ideas, there are two major challenges in applying it on large designs: (i) The test generation time grows exponentially with the design complexity, and (ii) it is infeasible to detect Trojans, since the side-channel sensitivity is marginal compared to the noise and process variations. Our proposed work addresses both challenges by effectively exploiting the affinity between the inputs and rare (suspicious) nodes. The basic idea is to quickly find the profitable ordered pairs of test vectors that can maximize side-channel sensitivity. This article makes two important contributions: (i) It proposed an efficient test generation algorithm that can produce the first patterns in the test vectors to maximize activation of suspicious nodes using an SMT solver, and (ii) it developed a genetic-algorithm based test generation technique to produce the second patterns in the test vectors to maximize the switching in the suspicious regions while minimizing the switching in the rest of the design. Our experimental results demonstrate that we can drastically improve both the side-channel sensitivity (62× on average) and time complexity (13× on average) compared to the state-of-the-art test generation techniques. 
    more » « less
  3. null (Ed.)
    Due to globalized semiconductor supply chain, there is an increasing risk of exposing System-on-Chip (SoC) designs to malicious implants, popularly known as hardware Trojans. Unfortunately, traditional simulation-based validation using millions of test vectors is unsuitable for detecting stealthy Trojans with extremely rare trigger conditions due to exponential input space complexity of modern SoCs. There is a critical need to develop efficient Trojan detection techniques to ensure trustworthy SoCs. While there are promising test generation approaches, they have serious limitations in terms of scalability and detection accuracy. In this paper, we propose a novel logic testing approach for Trojan detection using an effective combination of testability analysis and reinforcement learning. Specifically, this paper makes three important contributions. 1) Unlike existing approaches, we utilize both controllability and observability analysis along with rareness of signals to significantly improve the trigger coverage. 2) Utilization of reinforcement learning considerably reduces the test generation time without sacrificing the test quality. 3) Experimental results demonstrate that our approach can drastically improve both trigger coverage (14.5% on average) and test generation time (6.5 times on average) compared to state-of-the-art techniques. 
    more » « less
  4. Due to the increasing complexity of hardware designs, third-party hardware Intellectual Property (IP) cores are often incorporated to alleviate the burden on hardware designers. However, the prevalent use of third-party IPs has raised security concerns such as hardware Trojans. These Trojans inserted in the soft IPs are very difficult to detect through functional testing and no single detection methodology has been able to completely address this issue. Based on a Register- Transfer Level (RTL) soft IP analysis method named Structural Checking, this paper presents a hardware Trojan detection methodology and tool by detailing the implementation of a Golden Reference Library for matching an unknown IP to a functionally similar Golden Reference. The matching result is quantified in percentages so that two different IPs with similar functions have a higher percentage match. A match of the unknown IP to a whitelist IP advances it to be identified with a known functionality, while a match to a blacklist IP causes it to be detected as Trojan-infested. 
    more » « less
  5. Hardware Trojans in Integrated Circuits (ICs), that are inserted as hostile modifications in the design phase and/or the fabrication phase, are a security threat since the semiconductor manufacturing process is increasingly becoming globalized. These Trojans are devised to stay hidden during standard structural and functional testing procedures and only activate under pre-determined rare conditions (e.g., after a large number of clock cycles or the assertion of an improbable net). Once triggered, they can deliver malicious payloads (e.g., denial-of-service and information leakage attacks). Current literature identifies a collection of logic Trojans (both trigger circuits and payloads), but minimal research exists on memory Trojans despite their high feasibility. Emerging Non-Volatile Memories (NVMs), such as Resistive RAM (RRAM), have special properties such as non-volatility and gradual drift in bitcell resistance under a pulsing voltage input that make them prime targets to deploy hardware Trojans. In this paper, we present two delay-based and two voltage-based Trojan triggers using emerging NVM (ENTT) by utilizing RRAM’s resistance drift under a pulsing voltage input. Simulations show that ENTTs can be triggered by reading/writing to a specific memory address N times (N could be 2,500–3,500 or a different value for each ENTT design). Since the RRAM is non-volatile, address accesses can be intermittent and therefore stay undetected from system-level techniques that can identify continuous hammering as a possible security threat. We also present three reset techniques to de-activate the triggers. The resulting static/dynamic power overhead and maximum area overhead incurred by the proposed ENTTs are 104.24 μW/0.426 μW and 9.15 μm2, respectively in PTM 65 nm technology. ENTTs are effective against contemporary Trojan detection techniques and system level protocols. We also propose countermeasures to detect ENTT during the test phase and/or prevent fault-injection attacks during deployment. 
    more » « less