skip to main content


Title: Analysis of shape data: From landmarks to elastic curves
Abstract

Proliferation of high‐resolution imaging data in recent years has led to substantial improvements in the two popular approaches for analyzing shapes of data objects based on landmarks and/or continuous curves. We provide an expository account of elastic shape analysis of parametric planar curves representing shapes of two‐dimensional (2D) objects by discussing its differences, and its commonalities, to the landmark‐based approach. Particular attention is accorded to the role of reparameterization of a curve, which in addition to rotation, scaling and translation, represents an important shape‐preserving transformation of a curve. The transition to the curve‐based approach moves the mathematical setting of shape analysis from finite‐dimensional non‐Euclidean spaces to infinite‐dimensional ones. We discuss some of the challenges associated with the infinite‐dimensionality of the shape space, and illustrate the use of geometry‐based methods in the computation of intrinsic statistical summaries and in the definition of statistical models on a 2D imaging dataset consisting of mouse vertebrae. We conclude with an overview of the current state‐of‐the‐art in the field.

This article is categorized under:

Image and Spatial Data < Data: Types and Structure

Computational Mathematics < Applications of Computational Statistics

 
more » « less
Award ID(s):
1740761 1839252 1613054 1743943
NSF-PAR ID:
10449115
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
WIREs Computational Statistics
Volume:
12
Issue:
3
ISSN:
1939-5108
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Highlights

    We present a first true three‐dimensional analysis of chondrule size.

    Our ordinary chondrite chondrule diameter data demonstrate the trend of mean chondrule diameters increasing in the order H chondrites < L chondrites < LL chondrites.

    We also present the first detailed low‐iron enstatite chondrite chondrule size‐frequency distribution.

    We examine the shapes and collective orientations of the chondrules and show that chondrite petrofabrics can be explored with our methodology.

     
    more » « less
  2. Summary

    Different methods of measuring cavitation resistance in fern petioles lead to variable results, particularly with respect to the P50metric. We hypothesised that the fern dictyostele structure affects air entry into the xylem, and therefore impacts the shape of the vulnerability curve.

    Our study examined this variation by comparing vulnerability curves constructed on petioles collected from evergreen and deciduous ferns in the field, with curves generated using the standard centrifuge, air‐injection and bench‐top dehydration methods. Additional experiments complemented the vulnerability curves to better understand how anatomy shapes estimates of cavitation resistance.

    Centrifugation and radial air injection generated acceptable vulnerability curves for the deciduous species, but overestimated drought resistance in the two evergreen ferns. In these hardy plants, axial air injection and bench‐top dehydration produced results that most closely aligned with observations in nature. Additional experiments revealed that the dictyostele anatomy impedes air entry into the xylem during spinning and radial air injection.

    Each method produced acceptable vulnerability curves, depending on the species being tested. Therefore, we stress the importance of validating the curves within situmeasures of water potential and, if possible, hydraulic data to generate realistic results with any of the methods currently available.

     
    more » « less
  3. Abstract

    Since the very first detection of gravitational waves from the coalescence of two black holes in 2015, Bayesian statistical methods have been routinely applied by LIGO and Virgo to extract the signal out of noisy interferometric measurements, obtain point estimates of the physical parameters responsible for producing the signal, and rigorously quantify their uncertainties. Different computational techniques have been devised depending on the source of the gravitational radiation and the gravitational waveform model used. Prominent sources of gravitational waves are binary black hole or neutron star mergers, the only objects that have been observed by detectors to date. But also gravitational waves from core‐collapse supernovae, rapidly rotating neutron stars, and the stochastic gravitational‐wave background are in the sensitivity band of the ground‐based interferometers and expected to be observable in future observation runs. As nonlinearities of the complex waveforms and the high‐dimensional parameter spaces preclude analytic evaluation of the posterior distribution, posterior inference for all these sources relies on computer‐intensive simulation techniques such as Markov chain Monte Carlo methods. A review of state‐of‐the‐art Bayesian statistical parameter estimation methods will be given for researchers in this cross‐disciplinary area of gravitational wave data analysis.

    This article is categorized under:

    Applications of Computational Statistics > Signal and Image Processing and Coding

    Statistical and Graphical Methods of Data Analysis > Markov Chain Monte Carlo (MCMC)

    Statistical Models > Time Series Models

     
    more » « less
  4. Abstract

    Individual differences in tactile acuity have been correlated with age, gender and finger size, whereas the role of the skin's stiffness has been underexplored. Using an approach to image the 3‐D deformation of the skin surface during contact with transparent elastic objects, we evaluate a cohort of 40 young participants, who present a diverse range of finger size, skin stiffness and fingerprint ridge breadth. The results indicate that skin stiffness generally correlates with finger size, although individuals with relatively softer skin can better discriminate compliant objects. Analysis of contact at the skin surface reveals that softer skin generates more prominent patterns of deformation, in particular greater rates of change in contact area, which correlate with higher rates of perceptual discrimination of compliance, regardless of finger size. Moreover, upon applying hyaluronic acid to soften individuals’ skin, we observe immediate, marked and systematic changes in skin deformation and consequent improvements in perceptual acuity in differentiating compliance. Together, the combination of 3‐D imaging of the skin surface, biomechanics measurements, multivariate regression and clustering, and psychophysical experiments show that subtle distinctions in skin stiffness modulate the mechanical signalling of touch and shape individual differences in perceptual acuity.Key points

    Although declines in tactile acuity with ageing are a function of multiple factors, for younger people, the current working hypothesis has been that smaller fingers are better at informing perceptual discrimination because of a higher density of neural afferents.

    To decouple relative impacts on tactile acuity of skin properties of finger size, skin stiffness, and fingerprint ridge breadth, we combined 3‐D imaging of skin surface deformation, biomechanical measurements, multivariate regression and clustering, and psychophysics.

    The results indicate that skin stiffness generally correlates with finger size, although it more robustly correlates with and predicts an individual's perceptual acuity.

    In particular, more elastic skin generates higher rates of deformation, which correlate with perceptual discrimination, shown most dramatically by softening each participant's skin with hyaluronic acid.

    In refining the current working hypothesis, we show the skin's stiffness strongly shapes the signalling of touch and modulates individual differences in perceptual acuity.

     
    more » « less
  5. Summary

    Inflorescence architecture in plants is often complex and challenging to quantify, particularly for inflorescences of cereal grasses. Methods for capturing inflorescence architecture and for analyzing the resulting data are limited to a few easily captured parameters that may miss the rich underlying diversity.

    Here, we apply X‐ray computed tomography combined with detailed morphometrics, offering new imaging and computational tools to analyze three‐dimensional inflorescence architecture. To show the power of this approach, we focus on the panicles ofSorghum bicolor, which vary extensively in numbers, lengths, and angles of primary branches, as well as the three‐dimensional shape, size, and distribution of the seed.

    We imaged and comprehensively evaluated the panicle morphology of 55 sorghum accessions that represent the five botanical races in the most common classification system of the species, defined by genetic data. We used our data to determine the reliability of the morphological characters for assigning specimens to race and found that seed features were particularly informative.

    However, the extensive overlap between botanical races in multivariate trait space indicates that the phenotypic range of each group extends well beyond its overall genetic background, indicating unexpectedly weak correlation between morphology, genetic identity, and domestication history.

     
    more » « less