skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

Search for: All records

Award ID contains: 1740761

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We define a metric—the network Gromov–Wasserstein distance—on weighted, directed networks that is sensitive to the presence of outliers. In addition to proving its theoretical properties, we supply network invariants based on optimal transport that approximate this distance by means of lower bounds. We test these methods on a range of simulated network datasets and on a dataset of real-world global bilateral migration. For our simulations, we define a network generative model based on the stochastic block model. This may be of independent interest for benchmarking purposes.

    more » « less
  2. Abstract

    Proliferation of high‐resolution imaging data in recent years has led to substantial improvements in the two popular approaches for analyzing shapes of data objects based on landmarks and/or continuous curves. We provide an expository account of elastic shape analysis of parametric planar curves representing shapes of two‐dimensional (2D) objects by discussing its differences, and its commonalities, to the landmark‐based approach. Particular attention is accorded to the role of reparameterization of a curve, which in addition to rotation, scaling and translation, represents an important shape‐preserving transformation of a curve. The transition to the curve‐based approach moves the mathematical setting of shape analysis from finite‐dimensional non‐Euclidean spaces to infinite‐dimensional ones. We discuss some of the challenges associated with the infinite‐dimensionality of the shape space, and illustrate the use of geometry‐based methods in the computation of intrinsic statistical summaries and in the definition of statistical models on a 2D imaging dataset consisting of mouse vertebrae. We conclude with an overview of the current state‐of‐the‐art in the field.

    This article is categorized under:

    Image and Spatial Data < Data: Types and Structure

    Computational Mathematics < Applications of Computational Statistics

    more » « less
  3. Summary

    We propose a curve-based Riemannian geometric approach for general shape-based statistical analyses of tumours obtained from radiologic images. A key component of the framework is a suitable metric that enables comparisons of tumour shapes, provides tools for computing descriptive statistics and implementing principal component analysis on the space of tumour shapes and allows for a rich class of continuous deformations of a tumour shape. The utility of the framework is illustrated through specific statistical tasks on a data set of radiologic images of patients diagnosed with glioblastoma multiforme, a malignant brain tumour with poor prognosis. In particular, our analysis discovers two patient clusters with very different survival, subtype and genomic characteristics. Furthermore, it is demonstrated that adding tumour shape information to survival models containing clinical and genomic variables results in a significant increase in predictive power.

    more » « less
  4. Free, publicly-accessible full text available December 1, 2024
  5. Free, publicly-accessible full text available November 1, 2024
  6. Free, publicly-accessible full text available August 1, 2024
  7. Free, publicly-accessible full text available August 1, 2024
  8. Yang, Junyuan (Ed.)
    In this work, we develop a new set of Bayesian models to perform registration of real-valued functions. A Gaussian process prior is assigned to the parameter space of time warping functions, and a Markov chain Monte Carlo (MCMC) algorithm is utilized to explore the posterior distribution. While the proposed model can be defined on the infinite-dimensional function space in theory, dimension reduction is needed in practice because one cannot store an infinite-dimensional function on the computer. Existing Bayesian models often rely on some pre-specified, fixed truncation rule to achieve dimension reduction, either by fixing the grid size or the number of basis functions used to represent a functional object. In comparison, the new models in this paper randomize the truncation rule. Benefits of the new models include the ability to make inference on the smoothness of the functional parameters, a data-informative feature of the truncation rule, and the flexibility to control the amount of shape-alteration in the registration process. For instance, using both simulated and real data, we show that when the observed functions exhibit more local features, the posterior distribution on the warping functions automatically concentrates on a larger number of basis functions. Supporting materials including code and data to perform registration and reproduce some of the results presented herein are available online. 
    more » « less
    Free, publicly-accessible full text available July 7, 2024
  9. Free, publicly-accessible full text available July 3, 2024
  10. Free, publicly-accessible full text available June 17, 2024