All-normal dispersion fiber laser with a bandwidth tunable fiber-based spectral filter
We investigate numerically and experimentally an all-fiber, bandwidth tunable spectral filter comprising birefringent fibers. The spectral bandwidth tunability of the filter is based on the compensation of birefringence in polarization maintaining fibers. This unique filter allows mode-locked operation of a fiber oscillator with the ability to generate distinct laser modes with different output spectral shapes and pulse evolutions.
more »
« less
- Award ID(s):
- 1710914
- PAR ID:
- 10182786
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Letters
- Volume:
- 45
- Issue:
- 16
- ISSN:
- 0146-9592; OPLEDP
- Format(s):
- Medium: X Size: Article No. 4555
- Size(s):
- Article No. 4555
- Sponsoring Org:
- National Science Foundation
More Like this
-
Displacement measuring interferometry is a crucial component in metrology applications. In this paper, we propose a fiber-based two-wavelength heterodyne interferometer as a compact and highly sensitive displacement sensor that can be used in inertial sensing applications. In the proposed design, two individual heterodyne interferometers are constructed using two different wavelengths, 1064 nm and 1055 nm; one of which measures the target displacement and the other monitors the common-mode noise in the fiber system. A narrow-bandwidth spectral filter separates the beam paths of the two interferometers, which are highly common and provide a high rejection ratio to the environmental noise. The preliminary test shows a sensitivity floor of at 1 Hz when tested in an enclosed chamber. We also investigated the effects of periodic errors due to imperfect spectral separation on the displacement measurement and propose algorithms to mitigate these effects.more » « less
-
Characterizing ultrashort optical pulses has always been a critical but difficult task, which has a broad range of applications. We propose and demonstrate a self-referenced method of characterizing ultrafast pulses with a multimode fiber. The linear and nonlinear speckle patterns formed at the distal end of a multimode fiber are used to recover the spectral amplitude and phase of an unknown pulse. We deploy a deep learning algorithm for phase recovery. The diversity of spatial and spectral modes in a multimode fiber removes any ambiguity in the sign of the recovered spectral phase. Our technique allows for single-shot pulse characterization in a simple experimental setup. This work reveals the potential of multimode fibers as a versatile and multi-functional platform for optical sensing.more » « less
-
The purpose of this tutorial paper is to present a broad overview of photon-pair generation through the spontaneous four wave mixing (SFWM) process in optical fibers. Progress in optical fiber technology means that today we have at our disposal a wide variety of types of fiber, which, together with the fact that SFWM uses two pump fields, implies a truly remarkable versatility in the resulting possible photon-pair properties. We discuss how the interplay of frequency, transverse mode, and polarization degrees of freedom—the first linked to the latter two through fiber dispersion—leads to interesting entanglement properties both in individual degrees of freedom and also permitting hybrid and hyper entanglement in combinations of degrees of freedom. This tutorial covers methods for photon-pair factorability, frequency tunability, and SFWM bandwidth control, the effect of frequency non-degenerate and counterpropagating pumps, as well as methods for characterizing photon pairs generated in optical fibers.more » « less
An official website of the United States government
