We present a compact heterodyne laser interferometer developed for high-sensitivity displacement sensing applications. This interferometer consists of customized prisms and wave plates assembled as a quasi-monolithic unit to realize a miniaturized system. The interferometer design adopts a common-mode rejection scheme to provide a high rejection ratio to common environmental noise. Experimental tests in vacuum show a displacement sensitivity level of at and as low as above . The prototype unit is in size and weighs , allowing subsequent integration in compact systems.
more »
« less
Fiber-based two-wavelength heterodyne laser interferometer
Displacement measuring interferometry is a crucial component in metrology applications. In this paper, we propose a fiber-based two-wavelength heterodyne interferometer as a compact and highly sensitive displacement sensor that can be used in inertial sensing applications. In the proposed design, two individual heterodyne interferometers are constructed using two different wavelengths, 1064 nm and 1055 nm; one of which measures the target displacement and the other monitors the common-mode noise in the fiber system. A narrow-bandwidth spectral filter separates the beam paths of the two interferometers, which are highly common and provide a high rejection ratio to the environmental noise. The preliminary test shows a sensitivity floor of at 1 Hz when tested in an enclosed chamber. We also investigated the effects of periodic errors due to imperfect spectral separation on the displacement measurement and propose algorithms to mitigate these effects.
more »
« less
- Award ID(s):
- 2045579
- PAR ID:
- 10372425
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 30
- Issue:
- 21
- ISSN:
- 1094-4087; OPEXFF
- Format(s):
- Medium: X Size: Article No. 37993
- Size(s):
- Article No. 37993
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present a performance analysis of compact monolithic optomechanical inertial sensors that describes their key fundamental limits and overall acceleration noise floor. Performance simulations for low-frequency gravity-sensitive inertial sensors show attainable acceleration noise floors on the order of . Furthermore, from our performance models, we devised an optimization approach for our sensor designs, sensitivity, and bandwidth trade space. We conducted characterization measurements of these compact mechanical resonators, demonstrating -products at levels of 250 kg, which highlight their exquisite acceleration sensitivity.more » « less
-
Cross-platform observing systems are requisite to capturing the temporal and spatial dynamics of particles in the ocean. We present simultaneous observations of bulk optical properties, including the particulate beam attenuation ( ) and backscattering ( ) coefficients, and particle size distributions collected in the North Pacific Subtropical Gyre. Clear and coherent diel cycles are observed in all bulk and size-fractionated optical proxies for particle biomass. We show evidence linking diurnal increases in and to daytime particle growth and division of cells, with particles driving the daily cycle of particle production and loss within the mixed layer. Flow cytometry data reveal the nitrogen-fixing cyanobacteriumCrocosphaera( ) to be an important driver of at the time of sampling, whereasProchlorococcusdynamics ( ) were essential to reproducing temporal variability in . This study is a step towards improved characterization of the particle size range represented byin situbulk optical properties and a better understanding of the mechanisms that drive variability in particle production in the oligotrophic open ocean.more » « less
-
Flat lenses enable thinner, lighter, and simpler imaging systems. However, large-area and high-NA flat lenses have been elusive due to computational and fabrication challenges. Here we applied inverse design to create a multi-level diffractive lens (MDL) with thickness , diameter of 4.13 mm, and at wavelength of 850 nm (bandwidth ). Since the MDL is created in polymer, it can be cost-effectively replicated via imprint lithography.more » « less
-
One of the major challenges in large scale optical imaging of neuronal activity is to simultaneously achieve sufficient temporal and spatial resolution across a large volume. Here, we introduce sparse decomposition light-field microscopy (SDLFM), a computational imaging technique based on light-field microscopy (LFM) that takes algorithmic advantage of the high temporal resolution of LFM and the inherent temporal sparsity of spikes to improve effective spatial resolution and signal-to-noise ratios (SNRs). With increased effective spatial resolution and SNRs, neuronal activity at the single-cell level can be recovered over a large volume. We demonstrate the single-cell imaging capability of SDLFM within vivoimaging of neuronal activity of whole brains of larval zebrafish with estimated lateral and axial resolutions of and , respectively, acquired at volumetric imaging rates up to 50 Hz. We also show that SDLFM increases the quality of neural imaging in adult fruit flies.more » « less