skip to main content


Title: Fiber-based two-wavelength heterodyne laser interferometer

Displacement measuring interferometry is a crucial component in metrology applications. In this paper, we propose a fiber-based two-wavelength heterodyne interferometer as a compact and highly sensitive displacement sensor that can be used in inertial sensing applications. In the proposed design, two individual heterodyne interferometers are constructed using two different wavelengths, 1064 nm and 1055 nm; one of which measures the target displacement and the other monitors the common-mode noise in the fiber system. A narrow-bandwidth spectral filter separates the beam paths of the two interferometers, which are highly common and provide a high rejection ratio to the environmental noise. The preliminary test shows a sensitivity floor of7.5pm/Hzat 1 Hz when tested in an enclosed chamber. We also investigated the effects of periodic errors due to imperfect spectral separation on the displacement measurement and propose algorithms to mitigate these effects.

 
more » « less
Award ID(s):
2045579
NSF-PAR ID:
10372425
Author(s) / Creator(s):
;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
30
Issue:
21
ISSN:
1094-4087; OPEXFF
Page Range / eLocation ID:
Article No. 37993
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a compact heterodyne laser interferometer developed for high-sensitivity displacement sensing applications. This interferometer consists of customized prisms and wave plates assembled as a quasi-monolithic unit to realize a miniaturized system. The interferometer design adopts a common-mode rejection scheme to provide a high rejection ratio to common environmental noise. Experimental tests in vacuum show a displacement sensitivity level of11pm/Hzat100mHzand as low as0.6pm/Hzabove1pm. The prototype unit is20mm×<#comment/>20mm×<#comment/>10mmin size and weighs4.5g, allowing subsequent integration in compact systems.

     
    more » « less
  2. High-resolution strain sensing based on long, high-finesse fiber Fabry–Perot interferometers (FFPIs) has been demonstrated with a special focus on the infrasonic frequency range. A novel dual-FFPI scheme allows the large environment-induced background at low frequencies to be suppressed, permitting high strain resolution limited only by excess electronic noise. Noise-equivalent strain resolution of257pε<#comment/>/√<#comment/>Hzhas been achieved at 6 mHz, and the resolution improves to∼<#comment/>200fε<#comment/>/√<#comment/>Hzbetween 4–20 Hz. Without the use of any additional optical frequency references and with only off-the shelf commercial components, these resolutions are much better than most in the prior reports. Especially, an improvement of a factor of 1.8 is achieved in comparison with the highest resolution reported so far near 5 Hz. The limiting factors of the current scheme have been analyzed in detail, and the application prospects have been demonstrated using an acoustic transducer. The work lays out the potential of using long FFPIs with high finesse for high-resolution fiber-optic sensing in the infrasonic frequency range.

     
    more » « less
  3. This paper describes a novel, to the best of our knowledge, approach to build ultrastable interferometers using commercial mirror mounts anchored in an ultralow expansion (ULE) base. These components will play a critical role in any light particle search (ALPS) and will also be included in ground testing equipment for the upcoming laser interferometer space antenna (LISA) mission. Contrary to the standard ultrastable designs where mirrors are bonded to the spacers, ruling out any later modifications and alignments, our design remains flexible and allows the alignment of optical components at all stages to be optimized and changed. Here we present the dimensional stability and angular stability of two commercial mirror mounts characterized in a cavity setup. The long-term length change in the cavity did not exceed 30 nm and the relative angular stability was within 2 µrad, which meet the requirements for ALPS. We were also able to demonstrate1pm/Hz  length noise stability, which is a critical requirement for various subsystems in LISA. These results have led us to design similar opto-mechanical structures, which will be used in ground verification to test the LISA telescope.

     
    more » « less
  4. Integrated astrophotonic spectrometers are integrated variants of conventional free-space spectrometers that offer significantly reduced size, weight, and cost and immunity to alignment errors, and can be readily integrated with other astrophotonic instruments such as nulling interferometers. Current integrated dispersive astrophotonic spectrometers are one-dimensional devices such as arrayed waveguide gratings or planar echelle gratings. These devices have been limited to104resolving powers and<<#comment/>1000spectral bins due to having limited total optical delay paths and 1D detector array pixel densities. In this paper, we propose and demonstrate a high-resolution and compact astrophotonic serpentine integrated grating (SIG) spectrometer design based on a 2D dispersive serpentine optical phased array. The SIG device combines a 5.2 cm long folded delay line with grating couplers to create a large optical delay path along two dimensions in a compact integrated device footprint. Analogous to free-space crossed-dispersion high-resolution spectrometers, the SIG spectrometer maps spectral content to a 2D wavelength-beam-steered folded-raster emission pattern focused onto a 2D detector array. We demonstrate a SIG spectrometer with∼<#comment/>100kresolving power and∼<#comment/>6750spectral bins, which are approximately an order of magnitude higher than previous integrated photonic designs that operate over a wide bandwidth, in a0.4mm2footprint. We measure a Rayleigh resolution of1.93±<#comment/>0.07GHzand an operational bandwidth from 1540 nm to 1650 nm. Finally, we discuss refinements of the SIG spectrometer that improve its resolution, bandwidth, and throughput. These results show that SIG spectrometer technology provides a path towards miniaturized, high-resolution spectrometers for applications in astronomy and beyond.

     
    more » « less
  5. We present a performance analysis of compact monolithic optomechanical inertial sensors that describes their key fundamental limits and overall acceleration noise floor. Performance simulations for low-frequency gravity-sensitive inertial sensors show attainable acceleration noise floors on the order of1×<#comment/>10−<#comment/>11m/s2Hz. Furthermore, from our performance models, we devised an optimization approach for our sensor designs, sensitivity, and bandwidth trade space. We conducted characterization measurements of these compact mechanical resonators, demonstratingmQ-products at levels of 250 kg, which highlight their exquisite acceleration sensitivity.

     
    more » « less