The pH-low insertion peptide (pHLIP) is an anionic membrane-active peptide with promising potential for applications in imaging of cancer tumors and targeted delivery of chemotherapeutics. The key advantage of pHLIP lies in its acid sensitivity: in acidic cellular environments, pHLIP can insert unidirectionally into the plasma membrane. Partitioning–folding coupling is triggered by titration of the acidic residues in pHLIP, transforming pHLIP from a hydrophilic to a hydrophobic peptide. Despite this knowledge, the reverse pathway that leads to exit of the peptide from the plasma membrane is poorly understood. Our hypothesis is that sequential deprotonation of pHLIP is a prerequisite for exit of the peptide from the plasma membrane. We carried out molecular dynamics (MD) simulations to characterize the effect that deprotonation of the acidic residues of pHLIP has on the stability of the peptide when inserted into a model lipid bilayer of 1-palmitoyl-2-oleoyl-sn-3-phosphocholine (POPC). Initiation of the exit mechanism is facilitated by a complex relationship between the peptide, bulk solvent, and the membrane environment. As the N-terminal acidic residues of pHLIP are deprotonated, localized loss of helicity drives unfolding of the peptide and more pronounced interactions with the bilayer at the lipid–water interface. Deprotonation of the C-terminal acidic residues (D25, D31, D33, and E34) leads to further loss of secondary structure distal from the C-terminus, as well as formation of a water channel that stabilizes the orientation of pHLIP parallel to the membrane normal. Together, these results help explain how stabilization of intermediates between the surface-bound and inserted states of pHLIP occur and provide insights into rational design of pHLIP variants with modified abilities of insertion.
more »
« less
A Quantitative FRET Assay for the Upstream Cleavage Activity of the Integral Membrane Proteases Human ZMPSTE24 and Yeast Ste24
The integral membrane protease ZMPSTE24 plays an important role in the lamin A maturation pathway. ZMPSTE24 is the only known enzyme to cleave the last 15 residues from the C-terminus of prelamin A, including a farnesylated and carboxyl methylated cysteine. Mutations in ZMPSTE24 lead to progeroid diseases with abnormal prelamin A accumulation in the nucleus. Ste24 is the yeast functional homolog of ZMPSTE24 and similarly cleaves the a-factor pheromone precursor during its posttranslational maturation. To complement established qualitative techniques used to detect the upstream enzymatic cleavage by ZMPSTE24 and Ste24, including gel-shift assays and mass spectrometry analyses, we developed an enzymatic in vitro FRET-based assay to quantitatively measure the upstream cleavage activities of these two enzymes. This assay uses either purified enzyme or enzyme in crude membrane preparations and a 33-amino acid a-factor analog peptide that is a substrate for both Ste24 and ZMPSTE24. This peptide contains a fluorophore (2-aminobenzoic acid—Abz) at its N-terminus and a quencher moiety (dinitrophenol— DNP) positioned four residues downstream from the cleavage site. Upon cleavage, a fluorescent signal is generated in real time at 420 nm that is proportional to cleavage of the peptide and these kinetic data are used to quantify activity. This assay should provide a useful tool for kinetic analysis and for studying the catalytic mechanism of both ZMPSTE24 and Ste24.
more »
« less
- Award ID(s):
- 1905204
- PAR ID:
- 10182998
- Date Published:
- Journal Name:
- Methods in molecular biology
- Volume:
- 2009
- ISSN:
- 1064-3745
- Page Range / eLocation ID:
- 279-296
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We analyzed the spike protein S1/S2 cleavage of selected strains of a prototype coronavirus, mouse hepatitis virus (MHV) by the cellular protease furin, in order to understand the structural requirements underlying the sequence selectivity of the scissile segment. The probability of cleavage of selected MHV strains was first evaluated from furin cleavage scores predicted by the ProP computer software, and then cleavage was measured experimentally with a fluorogenic peptide cleavage assay consisting of S1/S2 peptide mimics and purified furin. We found that in vitro cleavability varied across MHV strains in line with predicted results—but with the notable exception of MHV-A59, which was not cleaved despite a high score predicted for its sequence. Using the known X-Ray structure of furin in complex with a substrate-like inhibitor as an initial structural reference, we carried out molecular dynamics (MD) simulations to learn the modes of binding of the peptides in the furin active site, and the suitability of the complex for initiation of the enzymatic cleavage. We identified the 3D structural requirements of the furin active site configuration that enable bound peptides to undergo cleavage, and the way in which the various strains tested experimentally are fulfilling these requirements. We find that despite some flexibility in the organization of the peptide bound to the active site of the enzyme, the presence of a histidine at P2 of MHV-A59 fails to properly orient the sidechain of His194 of the furin catalytic triad and therefore produces a distortion that renders the peptide/complex structural configuration in the active site incompatible with requirements for cleavage initiation. The Ser/Thr in P1 of MHV-2 and MHV-S has a similar effect of distorting the conformation of the furin active site residues produced by the elimination of the canonical salt-bridge formed by arginine in P1 position. This work informs a study of coronavirus infection and pathogenesis with respect to the function of the viral spike protein, and suggests an important process of viral adaptation and evolution within the spike S1/S2 structural loop.more » « less
-
Peptide-induced disruption of lipid membranes is central to both amyloid diseases and the activity of antimicrobial peptides. Here, we combine all-atom molecular dynamics simulations with biophysical experiments to investigate how four amphipathic peptides interact with lipid bilayers. All peptides adsorb on the membrane surface. Peptide M01 [Ac-(FKFE)2-NH2] self-assembles into β-sheet nanofibrils that span both leaflets of the membrane, creating water-permeable channels. The other three peptides adopt α-helical structures at the water–lipid interface. Peptide M02 [Ac-FFKKFFEE-NH2], a sequence isomer of M01, does not form β-sheet aggregates and is too short to span the bilayer, resulting in no observable water permeation across the membrane. Peptides M03 and M04 are α-helical isomers long enough to span the bilayer, with a polar face that allows the penetration of water deep inside the membrane. For the M03 peptide [Ac-(FFKKFFEE)2-NH2], insertion into the bilayer starts with the nonpolar N-terminal amino acids penetrating the hydrophobic core of the bilayer, while electrostatic interactions hold negative residues at the C-terminus on the membrane surface. The M04 peptide, [Ac-FFKKFFEEFKKFFEEF-NH2], is made by relocating a single nonpolar residue from the central region of M03 to the C-terminus. This nonpolar residue becomes unfavorably exposed to the solvent upon insertion of the N-terminal region of the peptide into the membrane. Consequently, higher concentrations of M04 peptides are required to induce water permeation compared to M03. Overall, our comparative analysis reveals how subtle rearrangements of polar and nonpolar residues modulate peptide-induced water permeation. This provides mechanistic insights relevant to amyloid pathology and antimicrobial peptide design.more » « less
-
Abstract Protein acetylation and acylation are widespread post‐translational modifications (PTMs) in eukaryotic and prokaryotic organisms. Histone acetyltransferase (HATs) enzymes catalyze the addition of short‐chain acyl moieties to lysine residues on cellular proteins. Many HAT members are found to be dysregulated in human diseases, especially oncological processes. Screening potent and selective HAT inhibitors has promising application for therapeutic innovation. A biochemical assay for quantification of HAT activity utilizing luminescent output is highly desirable to improve upon limitations associated with the classic radiometric assay formats. Here we report the design of a bioluminescent technological platform for robust and sensitive quantification of HAT activity. This platform utilizes the metabolic enzyme acetyl‐CoA synthetase 1 (ACS1) for a coupled reaction with firefly luciferase to generate luminescent signal relative to the HAT‐catalyzed acetylation reaction. The biochemical assay was implemented in microtiter plate format and our results showed this assay sensitively detected catalytic activity of HAT enzyme p300, accurately measured its steady‐state kinetic parameters of histone acetylation and measured the inhibitory potency of HAT inhibitor. This platform demonstrated excellent robustness, reproducibility, and signal‐to‐background ratios, with a screening window Z’=0.79. Our new bioluminescent design provides an alternative means for HAT enzymatic activity quantitation and HAT inhibitor screening.more » « less
-
Protein farnesylation is a post-translational modification where a 15-carbon farnesyl isoprenoid is appended to the C-terminal end of a protein by farnesyltransferase (FTase). This process often causes proteins to associate with the membrane and participate in signal transduction pathways. The most common substrates of FTase are proteins that have C-terminal tetrapeptide CaaX box sequences where the cysteine is the site of modification. However, recent work has shown that five amino acid sequences can also be recognized, including the pentapeptides CMIIM and CSLMQ. In this work, peptide libraries were initially used to systematically vary the residues in those two parental sequences using an assay based on Matrix Assisted Laser Desorption Ionization–Mass Spectrometry (MALDI-MS). In addition, 192 pentapeptide sequences from the human proteome were screened using that assay to discover additional extended CaaaX-box motifs. Selected hits from that screening effort were rescreened using an in vivo yeast reporter protein assay. The X-ray crystal structure of CMIIM bound to FTase was also solved, showing that the C-terminal tripeptide of that sequence interacted with the enzyme in a similar manner as the C-terminal tripeptide of CVVM, suggesting that the tripeptide comprises a common structural element for substrate recognition in both tetrapeptide and pentapeptide sequences. Molecular dynamics simulation of CMIIM bound to FTase further shed light on the molecular interactions involved, showing that a putative catalytically competent Zn(II)-thiolate species was able to form. Bioinformatic predictions of tetrapeptide (CaaX-box) reactivity correlated well with the reactivity of pentapeptides obtained from in vivo analysis, reinforcing the importance of the C-terminal tripeptide motif. This analysis provides a structural framework for understanding the reactivity of extended CaaaX-box motifs and a method that may be useful for predicting the reactivity of additional FTase substrates bearing CaaaX-box sequences.more » « less
An official website of the United States government

