skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Adversarial Classification Under Differential Privacy
The last decade has seen a growing interest in adversarial classification, where an attacker tries to mislead a classifier meant to detect anomalies. We study this problem in a setting where anomaly detection is being used in conjunction with differential privacy to protect personal information. We show that a strategic attacker can leverage the additional noise (introduced to ensure differential privacy) to mislead the classifier beyond what the attacker could do otherwise; we also propose countermeasures against such attacks. We then evaluate the impact of our attacks and defenses in road traffic congestion and smart metering examples.  more » « less
Award ID(s):
1929410
PAR ID:
10183059
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Network and Distributed Systems Security (NDSS) Symposium 2020
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Differential privacy is a widely accepted formal privacy definition that allows aggregate information about a dataset to be released while controlling privacy leakage for individuals whose records appear in the data. Due to the unavoidable tension between privacy and utility, there have been many works trying to relax the requirements of differential privacy to achieve greater utility.One class of relaxation, which is gaining support outside the privacy community is embodied by the definitions of individual differential privacy (IDP) and bootstrap differential privacy (BDP). Classical differential privacy defines a set of neighboring database pairs and achieves its privacy guarantees by requiring that each pair of neighbors should be nearly indistinguishable to an attacker. The privacy definitions we study, however, aggressively reduce the set of neighboring pairs that are protected.To a non-expert, IDP and BDP can seem very appealing as they echo the same types of privacy explanations that are associated with differential privacy, and also experimentally achieve dramatically better utility. However, we show that they allow a significant portion of the dataset to be reconstructed using algorithms that have arbitrarily low privacy loss under their privacy accounting rules.With the non-expert in mind, we demonstrate these attacks using the preferred mechanisms of these privacy definitions. In particular, we design a set of queries that, when protected by these mechanisms with high noise settings (i.e., with claims of very low privacy loss), yield more precise information about the dataset than if they were not protected at all. The specific attacks here can be defeated and we give examples of countermeasures. However, the defenses are either equivalent to using differential privacy or to ad-hoc methods tailored specifically to the attack (with no guarantee that they protect against other attacks). Thus, the defenses emphasize the deficiencies of these privacy definitions. 
    more » « less
  2. Privacy attacks on machine learning models aim to identify the data that is used to train such models. Such attacks, traditionally, are studied on static models that are trained once and are accessible by the adversary. Motivated to meet new legal requirements, many machine learning methods are recently extended to support machine unlearning, i.e., updating models as if certain examples are removed from their training sets, and meet new legal requirements. However, privacy attacks could potentially become more devastating in this new setting, since an attacker could now access both the original model before deletion and the new model after the deletion. In fact, the very act of deletion might make the deleted record more vulnerable to privacy attacks. Inspired by cryptographic definitions and the differential privacy framework, we formally study privacy implications of machine unlearning. We formalize (various forms of) deletion inference and deletion reconstruction attacks, in which the adversary aims to either identify which record is deleted or to reconstruct (perhaps part of) the deleted records. We then present successful deletion inference and reconstruction attacks for a variety of machine learning models and tasks such as classification, regression, and language models. Finally, we show that our attacks would provably be precluded if the schemes satisfy (variants of) deletion compliance (Garg, Goldwasser, and Vasudevan, Eurocrypt’20). 
    more » « less
  3. Data poisoning attacks and backdoor attacks aim to corrupt a machine learning classifier via modifying, adding, and/or removing some carefully selected training examples, such that the corrupted classifier makes incorrect predictions as the attacker desires. The key idea of state-of-the-art certified defenses against data poisoning attacks and backdoor attacks is to create a majority vote mechanism to predict the label of a testing example. Moreover, each voter is a base classifier trained on a subset of the training dataset. Classical simple learning algorithms such as k nearest neighbors (kNN) and radius nearest neighbors (rNN) have intrinsic majority vote mechanisms. In this work, we show that the intrinsic majority vote mechanisms in kNN and rNN already provide certified robustness guarantees against data poisoning attacks and backdoor attacks. Moreover, our evaluation results on MNIST and CIFAR10 show that the intrinsic certified robustness guarantees of kNN and rNN outperform those provided by state-of-the-art certified defenses. Our results serve as standard baselines for future certified defenses against data poisoning attacks and backdoor attacks. 
    more » « less
  4. An attacker can effectively publish false measurements in distributed cyber-physical systems with noisy measurements. These biased false measurements can be impossible to distinguish from noise and enable the attacker to gain a small but persistent economic advantage. The residual sum, a fundamental measurement of bias in cyber-physical systems, is employed to develop a detection scheme for bias attacks. The scheme is highly efficient, privacy preserving and effectively detects bias attacks. 
    more » « less
  5. IEEE/IFIP (Ed.)
    We investigate the feasibility of targeted privacy attacks using only information available in physical channels of LTE mobile networks and propose three privacy attacks to demonstrate this feasibility: mobile-app fingerprinting attack, history attack, and correlation attack. These attacks can reveal the geolocation of targeted mobile devices, the victim's app usage patterns, and even the relationship between two users within the same LTE network cell. An attacker also may launch these attacks stealthily by capturing radio signals transmitted over the air, using only a passive sniffer as equipment. To ensure the impact of these attacks on mobile users' privacy, we perform evaluations in both laboratory and real-world settings, demonstrating their practicality and dependability. Furthermore, we argue that these attacks can target not only 4G/LTE but also the evolving 5G standards. 
    more » « less