skip to main content

Title: DISTRIBUTED BIAS DETECTION IN CYBER-PHYSICAL SYSTEMS
An attacker can effectively publish false measurements in distributed cyber-physical systems with noisy measurements. These biased false measurements can be impossible to distinguish from noise and enable the attacker to gain a small but persistent economic advantage. The residual sum, a fundamental measurement of bias in cyber-physical systems, is employed to develop a detection scheme for bias attacks. The scheme is highly efficient, privacy preserving and effectively detects bias attacks.
Authors:
;
Award ID(s):
1837472
Publication Date:
NSF-PAR ID:
10190269
Journal Name:
Critical Infrastructure Protection XIV
Sponsoring Org:
National Science Foundation
More Like this
  1. Control systems are increasingly targeted by malicious adversaries, who may inject spurious sensor measurements in order to bias the controller behavior and cause suboptimal performance or safety violations. This paper investigates the problem of tracking a reference trajectory while satisfying safety and reachability constraints in the presence of such false data injection attacks. We consider a linear, time-invariant system with additive Gaussian noise in which a subset of sensors can be compromised by an attacker, while the remaining sensors are regarded as secure. We propose a control policy in which two estimates of the system state are maintained, one basedmore »on all sensors and one based on only the secure sensors. The optimal control action based on the secure sensors alone is then computed at each time step, and the chosen control action is constrained to lie within a given distance of this value. We show that this policy can be implemented by solving a quadraticallyconstrained quadratic program at each time step. We develop a barrier function approach to choosing the parameters of our scheme in order to provide provable guarantees on safety and reachability, and derive bounds on the probability that our control policies deviate from the optimal policy when no attacker is present. Our framework is validated through numerical study.« less
  2. Defense mechanisms against network-level attacks are commonly based on the use of cryptographic techniques, such as lengthy message authentication codes (MAC) that provide data integrity guarantees. However, such mechanisms require significant resources (both computational and network bandwidth), which prevents their continuous use in resource-constrained cyber-physical systems (CPS). Recently, it was shown how physical properties of controlled systems can be exploited to relax these stringent requirements for systems where sensor measurements and actuator commands are transmitted over a potentially compromised network; specifically, that merely intermittent use of data authentication (i.e., at occasional time points during system execution), can still provide strongmore »Quality-of-Control (QoC) guarantees even in the presence of false-data injection attacks, such as Man-in-the-Middle (MitM) attacks. Consequently, in this work, we focus on integrating security into existing resource-constrained CPS, in order to protect against MitM attacks on a system where a set of control tasks communicates over a real-time network with system sensors and actuators. We introduce a design-time methodology that incorporates requirements for QoC in the presence of attacks into end-to-end timing constraints for real-time control transactions, which include data acquisition and authentication, real-time network messages, and control tasks. This allows us to formulate a mixed integer linear programming-based method for direct synthesis of schedulable tasks and message parameters (i.e., deadlines and offsets) that do not violate timing requirements for the already deployed controllers, while adding a sufficient level of protection against network-based attacks; specifically, the synthesis method also provides suitable intermittent authentication policies that ensure the desired QoC levels under attack. To additionally reduce the security-related bandwidth overhead, we propose the use of cumulative message authentication at time instances when the integrity of messages from subsets of sensors should be ensured. Furthermore, we introduce a method for the opportunistic use of the remaining resources to further improve the overall QoC guarantees while ensuring system (i.e., task and message) schedulability. Finally, we demonstrate applicability and scalability of our methodology on synthetic automotive systems as well as a real-world automotive case-study.« less
  3. This work proposes a moving target defense (MTD) strategy to detect coordinated cyber-physical attacks (CCPAs) against power grids. A CCPA consists of a physical attack, such as disconnecting a transmission line, followed by a coordinated cyber attack that injects false data into the sensor measurements to mask the effects of the physical attack. Such attacks can lead to undetectable line outages and cause significant damage to the grid. The main idea of the proposed approach is to invalidate the knowledge that the attackers use to mask the effects of the physical attack by actively perturbing the grid’s transmission line reactancesmore »using distributed flexible AC transmission system (D-FACTS) devices. We identify the MTD design criteria in this context to thwart CCPAs. The proposed MTD design consists of two parts. First, we identify the subset of links for D-FACTS device deployment that enables the defender to detect CCPAs against any link in the system. Then, in order to minimize the defense cost during the system’s operational time, we use a game-theoretic approach to identify the best subset of links (within the D-FACTS deployment set) to perturb which will provide adequate protection. Extensive simulations performed using the MATPOWER simulator on IEEE bus systems verify the effectiveness of our approach in detecting CCPAs and reducing the operator’s defense cost.« less
  4. Power system state estimation is an important component of the status and healthiness of the underlying electric power grid real-time monitoring. However, such a component is prone to cyber-physical attacks. The majority of research in cyber-physical power systems security focuses on detecting measurements False-Data Injection attacks. While this is important, measurement model parameters are also a most important part of the state estimation process. Measurement model parameters though, also known as static-data, are not monitored in real-life applications. Measurement model solutions ultimately provide estimated states. A state-of-the-art model presents a two-step process towards simultaneous false-data injection security: detection and correction.more »Detection steps are χ2 statistical hypothesis test based, while correction steps consider the augmented state vector approach. In addition, the correction step uses an iterative solution of a relaxed non-linear model with no guarantee of optimal solution. This paper presents a linear programming method to detect and correct cyber-attacks in the measurement model parameters. The presented bi-level model integrates the detection and correction steps. Temporal and spatio characteristics of the power grid are used to provide an online detection and correction tool for attacks pertaining the parameters of the measurement model. The presented model is implemented on the IEEE 118 bus system. Comparative test results with the state-of-the-art model highlight improved accuracy. An easy-to-implement model, built on the classical weighted least squares solution, without hard-to-derive parameters, highlights potential aspects towards real-life applications.« less
  5. Concerning power systems, real-time monitoring of cyber–physical security, false data injection attacks on wide-area measurements are of major concern. However, the database of the network parameters is just as crucial to the state estimation process. Maintaining the accuracy of the system model is the other part of the equation, since almost all applications in power systems heavily depend on the state estimator outputs. While much effort has been given to measurements of false data injection attacks, seldom reported work is found on the broad theme of false data injection on the database of network parameters. State-of-the-art physics-based model solutions correctmore »false data injection on network parameter database considering only available wide-area measurements. In addition, deterministic models are used for correction. In this paper, an overdetermined physics-based parameter false data injection correction model is presented. The overdetermined model uses a parameter database correction Jacobian matrix and a Taylor series expansion approximation. The method further applies the concept of synthetic measurements, which refers to measurements that do not exist in the real-life system. A machine learning linear regression-based model for measurement prediction is integrated in the framework through deriving weights for synthetic measurements creation. Validation of the presented model is performed on the IEEE 118-bus system. Numerical results show that the approximation error is lower than the state-of-the-art, while providing robustness to the correction process. Easy-to-implement model on the classical weighted-least-squares solution, highlights real-life implementation potential aspects.« less