skip to main content

Title: Revisiting the Relation Between Momentum and Scalar Roughness Lengths of Urban SurfacesRevisiting the Relation Between the Momentum and Scalar Roughness Lengths of Urban Surfaces
Large Eddy Simulations (LES) of neutral flow over regular arrays of cuboids are conducted to explore connections between momentum (z 0m ) and scalar (z 0s ) roughness lengths in urban environments, and how they are influenced by surface geometry. As LES resolves the obstacles but not the micro‐scale boundary layers attached to them, the aforementioned roughness lengths are analyzed at two distinct spatial scales. At the micro‐scale (roughness of individual facets, e.g. roofs), it is assumed that both momentum and scalar transfer are governed by accepted arguments for smooth walls that form the basis for the LES wall model. At the macro‐scale, the roughness lengths are representative of the aggregate effects of momentum and scalar transfer over the resolved roughness elements of the whole surface, and hence they are directly computed from the LES. The results indicate that morphologically‐based parameterizations for macro‐scale z 0m are adequate overall. The relation between the momentum and scalar macro‐roughness values, as conventionally represented by log(z 0m /z 0s ) and assumed to scale with urn:x-wiley:00359009:media:qj3839:qj3839-math-0001 (where Re * is a roughness Reynolds number), is then interpreted using surface renewal theory (SRT). SRT predicts n = 1/4 when only Kolmogorov‐scale eddies dominate the scalar exchange, whereas n = 1/2 is predicted when large eddies limit the renewal dynamics. The latter is found to better capture the LES results. However, both scaling relations indicate that z 0s decreases when z 0m increases for typical urban geometries and scales. This is opposite to how their relation is usually modeled for urban canopies (i.e. z 0s /z 0m is a fixed value smaller than unity).  more » « less
Award ID(s):
1664021 1754893
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Quarterly journal of the Royal Meteorological Society
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Accurately predicting bare‐soil evaporation requires the proper characterization of the near‐surface atmospheric conditions. These conditions, dependent on factors such as surface microtopography and wind velocity, vary greatly and therefore require high‐resolution datasets to be fully incorporated into evaporation models. These factors are oftentimes parameterized in models through the aerodynamic resistance (ra), in which the vapor roughness length (z0v) and the momentum roughness length (z0m) are two crucial parameters that describe the transport near the soil‐atmosphere interface. Typically, when evaluating bare‐soil evaporation, these two characteristic lengths are assumed equal, although differences are likely to occur especially in turbulent flows over undulating surfaces. Thus, this study aims to investigate the relationship betweenz0vandz0mabove undulating surfaces to ultimately improve accuracy in estimating evaporation rate. To achieve this goal, four uniquely designed wind tunnel—soil tank experiments were conducted considering different wind speeds and undulation spacings. Particle image velocimetry (PIV) was used to measure the velocity field above the undulating surface in high resolution. Using the high‐fidelity data set, the logarithmic ratio ofz0vtoz0mis determined and used to estimatera. Results confirm that these lengths differ significantly, with the logarithmic ratio roughly ranging from −15 to −5 under the conditions tested. PIV‐measured results demonstrate this ratio is closely tied to the mass and momentum transport behaviors influenced by surface undulations. Using the data‐integrated formulation ofra, predictions of evaporation rate were prepared for both the laboratory and lysimeter experiments, demonstrating the efficacy of the proposed approach in this study.

    more » « less
  2. Abstract The predictability of passive scalar dispersion is of both theoretical interest and practical importance, for example for high‐resolution numerical weather prediction and air quality modeling. However, the implications for the numerical modeling of urban areas remain relatively unexplored. Using obstacle‐resolving large‐eddy simulations (LES), we conducted twin experiments, with and without a velocity perturbation, to investigate how the presence of urban roughness affects error growth in streamwise velocity ( u ) and passive scalar ( θ ) fields, as well as the differences between error evolutions in u and θ fields. The predictability limit is characterized using the signal‐to‐noise ratio (SNR) as a continuous metric to indicate when error reaches saturation. The presence of urban roughness decreases of the passive scalar by around 20% compared to cases without them. The error statistics of θ indicate that urban roughness‐induced flow structures and different scalar source locations affect the scalar dispersion and relative fluctuations, which subsequently dictate the evolution of the SNR. Analysis of the passive scalar error energy ( ϵ θ 2 ) budget indicates that the contributions from advective transport by the velocity and velocity error dominate. The error energy spectra of both u and θ exhibit a −5/3 slope in flat‐wall cases, but not in the presence of urban roughness, thereby highlighting the deviation from the assumption of locally isotropic turbulence. This study reveals that urban roughness can decrease the predictability of the passive scalar and destroy the similarity between the error statistics of the velocity and the passive scalar. 
    more » « less
  3. Abstract

    Mesoscale climate models provide indispensable tools to understand land‐atmosphere interactions over urban regions. However, uncertainties in urban canopy parameters (UCPs) and parameterization schemes lead to degraded representation of the drag effect in complex built terrains. In particular, for the widely applied single‐layer urban canopy model (SLUCM) coupled with the Weather Research and Forecasting (WRF) model, near‐surface horizontal wind speed is known to be overestimated systematically. In this study, idealized large eddy simulations (LES) and WRF‐SLUCM simulations are conducted to study the separate effect of UCPs and aerodynamic parameterization on atmospheric boundary layer processes and rainfall variabilities in Phoenix, Arizona. For LES that explicitly resolves surface geometry, significant differences between three‐dimensional (3D) versus two‐dimensional (2D) representation of urban morphology are found in the surface layer and above. When surface drag is parameterized following SLUCM, surface morphologies have little impacts on the mean momentum transfer. WRF‐SLUCM simulation results, incorporated with 3D urban morphology data, indicate that simply refining the frontal area index will reduce the surface drag, which further amplifies the systematic positive bias of SLUCM in predicting horizontal wind speed. Replacing the drag parameterization in SLUCM by LES‐based aerodynamic parameters has evident impacts on near‐surface wind speed. The impact of urban roughness representation becomes the most evident during rainfall periods, due to the important role of surface drag in dictating moisture convergence. Our study underlines that apart from intensive efforts in obtaining detailed UCPs, it is also critical to enhance the urban momentum exchange parameterization schemes.

    more » « less
  4. null (Ed.)
    Large-eddy simulations are conducted to contrast momentum and passive scalar transport over large, three-dimensional roughness elements in a turbulent channel flow. Special attention is given to the dispersive fluxes, which are shown to be a significant fraction of the total flux within the roughness sublayer. Based on pointwise quadrant analysis, the turbulent components of the transport of momentum and scalars are found to be similar in general, albeit with increasing dissimilarity for roughnesses with low frontal blockage. However, strong dissimilarity is noted between the dispersive momentum and scalar fluxes, especially below the top of the roughness elements. In general, turbulence is found to transport momentum more efficiently than scalars, while the reverse applies to the dispersive contributions. The effects of varying surface geometries, measured by the frontal density, are pronounced on turbulent fluxes and even more so on dispersive fluxes. Increasing frontal density induces a general transition in the flow from a wall bounded type to a mixing layer type. This transition results in an increase in the efficiency of turbulent momentum transport, but the reverse occurs for scalars due to reduced contributions from large-scale motions in the roughness sublayer. This study highlights the need for distinct parameterizations of the turbulent and dispersive fluxes, as well as the importance of considering the contrasts between momentum and scalar transport for flows over very rough surfaces. 
    more » « less
  5. If an adhesive is meant to be temporary, roughness often poses a challenge for design. An adhesive could be made soft so that it can deform and increase surface contact but a softer material will in general hold a smaller load. Bioinspired adhesives, made with numerous microscale posts, show promise as roughness tolerant adhesives but are complicated to fabricate. In this work, we show how thin polymer sheets, when crumpled into a roughly spherical shape, form a very simple and roughness tolerant adhesive system. We use micro and macro-scale experiments to measure adhesion forces between various substrates and crumpled polydimethylsiloxane sheets. We find the force-displacement curves resemble probe-tack experiments of traditional pressure sensitive adhesives and that moderate tensile forces are required to initiate interfacial failure. Notably, we see that sticky crumples often perform better on long wavelength roughness than they do on smooth substrates. In order to improve the peak pull-off forces, we create a sticky crumple from a thin sheet of a glassy polymer, polycarbonate, coated with an adhesive layer. This elasto-plastic sticky crumple achieves high pull-off forces even on the rough surface of a landscaping brick. 
    more » « less