skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Type III collagen is a key regulator of the collagen fibrillar structure and biomechanics of articular cartilage and meniscus
Award ID(s):
1751898
PAR ID:
10183341
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Matrix Biology
Volume:
85-86
Issue:
C
ISSN:
0945-053X
Page Range / eLocation ID:
47 to 67
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. null (Ed.)
  3. The mechanical behavior of soft collagenous tissues is largely influenced by the reinforcing collagen fiber microstructure. The anisotropic collagen microstructure can remodel in response to changes in mechanical loading, which can dramatically alter the mechanical properties of the tissues and the mechanical environment of the resident cells. It is important to study the remodeling mechanisms of collagen tissues to understand the pathophysiology of various connective tissue diseases. We hypothesize that the collagen structure actively changes in response to mechanical stimuli through concurrent processes of collagen deposition and degradation and that the rates of these processes are altered by collagen mechanochemistry, mechanosensitive collagen production, and cellular contraction. In prior studies, we developed micromechanical models of collagen tissues to investigate the role of collagen mechanochemistry and mechanosensitive collagen production in remodeling the collagen fiber structure and tissue growth.[1,2] We found that stress inhibition of enzymatic degradation and stimulation of collagen production can explain many phenomena, including remodeling the anisotropic collagen structure along the directions of the maximum principal stress and the development of stress homeostasis. The goal of this study is to investigate the effect of mechanical loading on the active behavior of the cells. Our approach uses a model 3D microtissue systems, self-assembled on a magnetically actuated two-pillar system (µTUG), to investigate these cell-collagen interactions and effects of mechanical loading. The micropillar support allows for measurement of the active cellular contraction, while the magnetic tweezer allows for mechanical testing of the microtissue under a controlled stress rate. Digital image analysis is applied to measure the local two-dimensional (2D) strain field. To analyze the mechanical measurements for mechanical properties of the collagen structure and active behavior of the cells, we developed a micromechanical model for the mechanical behavior of the microtissue. The micromechanical model includes the elastic behavior of the anisotropic collagen structure and the anisotropic active behavior of the cells. To describe mechanosensitive cellular contraction, we assume concurrent polymerization/depolymerization of actin filaments, where the polymerization rate increases with the fiber stress. In this paper, we will briefly summarize the model and describe an initial model validation by comparing to µTUG experiments measuring the stress-strain behavior of the microtissue to load-unload tests. 
    more » « less