skip to main content

Title: Discovery of an Inducible Toluene Monooxygenase that Co-oxidizes 1,4-Dioxane and 1,1-Dichloroethylene in Propanotrophic Azoarcus sp. DD4
Cometabolic degradation plays a prominent role in bioremediation of commingled groundwater contamination (e.g., chlorinated solvents and the solvent stabilizer 1,4-dioxane [dioxane]). In this study, we untangled the diversity and catalytic functions of multi-component monooxygenases in Azoarcus sp. DD4, a gram-negative propanotroph that is effective in degrading dioxane and 1,1-dichloroethylene (1,1-DCE). Using a combination of knockout mutagenesis and heterologous expression, a toluene monooxygenase (MO) encoded by the tmoABCDEF gene cluster was unequivocally proved as the key enzyme responsible for the cometabolism of both dioxane and 1,1-DCE. Interestingly, in addition to utilizing toluene as a primary substrate, this toluene MO can also oxidize propane into 1-propanol. Expression of this toluene MO in DD4 appears inducible by both substrates (toluene and propane) and their primary hydroxylation products (m-cresol, p-cresol, and 1-propanol). These findings coherently explain why DD4 can grow on propane and express toluene MO for active co-oxidation of dioxane and 1,1-DCE. Furthermore, upregulation of tmo transcription by 1-propanol underlines the implication potential of using 1-propanol as an alternative auxiliary substrate for DD4 bioaugmentation. The discovery of this toluene MO in DD4 and its degradation and induction versatility renders broad applications spanning from environmental remediation and water treatment to biocatalysis in green chemistry. more » Importance Toluene MOs have been well recognized given their robust abilities to degrade a variety of environmental pollutants. Built upon previous research efforts, this study ascertained the untapped capability of a toluene MO in DD4 for effective co-oxidation of dioxane and 1,1-DCE, two of the most prevailing yet challenging groundwater contaminants. This report also aligns the induction of a toluene MO with non-toxic and commercially accessible chemicals (e.g., propane and 1-propanol), extending its implication values in the field of environmental microbiology and beyond. « less
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Applied and Environmental Microbiology
Sponsoring Org:
National Science Foundation
More Like this
  1. Cometabolic bioremediation is trending for the treatment of 1,4-dioxane (dioxane) and other emerging contaminants to meet stringent regulatory goals ( e.g. , <10 μg L −1 ) since biodegradation activities can be fueled by the supplementation of auxiliary substrates. In this study, we compared and investigated the effectiveness of two types of common auxiliary substrates, short-chain alkane gases ( e.g. , propane and butane) and primary alcohols ( e.g. , 1-propanol, 1-butanol, and ethanol), for dioxane removal in diverse environmental matrices with Azoarcus sp. DD4 as the inoculum. Physicochemical characterization at the pure culture level revealed that propane and 1-propanol are advantageous for stimulating cell growth and dioxane biodegradation by DD4. Parallel microcosm assays were conducted to assess the compatibility of DD4 bioaugmentation in diverse microbiomes recovered from five different environmental samples, including shallow and deep aquifer groundwater, contaminated river sediment, and municipal activated sludge. Propane was effective in sustaining efficient dioxane removal and the dominance of DD4 across all environmental matrices. Notably, amendment with 1-propanol promoted superior dioxane degradation in the deep aquifer groundwater, in which low pre-treatment biomass and post-treatment diversity were observed, suggesting its potential for intrinsic field applications. The combination of microbial community analysis and differentialmore »ranking identified that Ochrobactrum and several other indigenous bacteria were boosted by the inoculation of DD4, implying their commensal or mutualistic relationship. Collectively, propane and 1-propanol can be effective auxiliary substrate alternatives tailored for in situ bioaugmentation and their effectiveness is affected by the density and structure of environmental microbiomes.« less
  2. ABSTRACT Azoarcus sp. strain DD4 can cometabolically degrade 1,4-dioxane and 1,1-dichloroethylene (1,1-DCE) when grown with propane and other substrates. The complete genome sequence of strain DD4 reveals a diverse collection of bacterial monooxygenase genes that may contribute to its versatility in degrading commingled groundwater pollutants.
  3. Co-contamination with chlorinated compounds and 1,4-dioxane has been reported at many sites. Recently, there has been an increased interest in bioremediation because of the potential to degrade multiple contaminants concurrently. Towards improving bioremediation efficacy, the current study examined laboratory microcosms (inoculated separately with two soils) to determine the phylotypes and functional genes associated with the biodegradation of two common co-contaminants (cis-dichloroethene [cDCE] and 1,4-dioxane). The impact of amending microcosms with lactate on cDCE and 1,4-dioxane biodegradation was also investigated. The presence of either lactate or cDCE did not impact 1,4-dioxane biodegradation one of the two soils. Lactate appeared to improve the initiation of the biological removal of cDCE in microcosms inoculated with either soil. Stable isotope probing (SIP) was then used to determine which phylotypes were actively involved in carbon uptake from cDCE and 1,4-dioxane in both soil communities. The most enriched phylotypes for 13C assimilation from 1,4-dioxane included Rhodopseudomonas and Rhodanobacter. Propane monooxygenase was predicted (by PICRUSt2) to be dominant in the 1,4-dioxane amended microbial communities and propane monooxygenase gene abundance values correlated with other enriched (but less abundant) phylotypes for 13C-1,4-dioxane assimilation. The dominant enriched phylotypes for 13C assimilation from cDCE included Bacteriovorax, Pseudomonas and Sphingomonas. In themore »cDCE amended soil microcosms, PICRUSt2 predicted the presence of DNA encoding glutathione S-transferase (a known cDCE upregulated enzyme). Overall, the work demonstrated concurrent removal of cDCE and 1,4-dioxane by indigenous soil microbial communities and the enhancement of cDCE removal by lactate. The data generated on the phylotypes responsible for carbon uptake (as determined by SIP) could be incorporated into diagnostic molecular methods for site characterization. The results suggest concurrent biodegradation of cDCE and 1,4-dioxane should be considered for chlorinated solvent site remediation.« less
  4. We perform a thermodynamic analysis of the energetic cost of CO 2 separation from flue gas (0.1 bar CO 2 (g)) and air (400 ppm CO 2 ) using a pH swing created by electrochemical redox reactions involving proton-coupled electron transfer from molecular species in aqueous electrolyte. In this scheme, electrochemical reduction of these molecules results in the formation of alkaline solution, into which CO 2 is absorbed; subsequent electrochemical oxidation of the reduced molecules results in the acidification of the solution, triggering the release of pure CO 2 gas. We examined the effect of buffering from the CO 2 –carbonate system on the solution pH during the cycle, and thereby on the open-circuit potential of an electrochemical cell in an idealized four-process CO 2 capture-release cycle. The minimum work input varies from 16 to 75 kJ mol CO2 −1 as throughput increases, for both flue gas and direct air capture, with the potential to go substantially lower if CO 2 capture or release is performed simultaneously with electrochemical reduction or oxidation. We discuss the properties required of molecules that would be suitable for such a cycle. We also demonstrate multiple experimental cycles of an electrochemical CO 2 capture andmore »release system using 0.078 M sodium 3,3′-(phenazine-2,3-diylbis(oxy))bis(propane-1-sulfonate) as the proton carrier in an aqueous flow cell. CO 2 capture and release are both performed at 0.465 bar at a variety of current densities. When extrapolated to infinitesimal current density we obtain an experimental cycle work of 47.0 kJ mol CO2 −1 . This result suggests that, in the presence of a 0.465 bar/1.0 bar inlet/outlet pressure ratio, a 1.9 kJ mol CO2 −1 thermodynamic penalty should add to the measured value, yielding an energy cost of 48.9 kJ mol CO2 −1 in the low-current-density limit. This result is within a factor of two of the ideal cycle work of 34 kJ mol CO2 −1 for capturing at 0.465 bar and releasing at 1.0 bar. The ideal cycle work and experimental cycle work values are compared with those for other electrochemical and thermal CO 2 separation methods.« less
  5. Buan, Nicole R. (Ed.)
    ABSTRACT Sideroxydans lithotrophicus ES-1 grows autotrophically either by Fe(II) oxidation or by thiosulfate oxidation, in contrast to most other isolates of neutrophilic Fe(II)-oxidizing bacteria (FeOB). This provides a unique opportunity to explore the physiology of a facultative FeOB and constrain the genes specific to Fe(II) oxidation. We compared the growth of S. lithotrophicus ES-1 on Fe(II), thiosulfate, and both substrates together. While initial growth rates were similar, thiosulfate-grown cultures had higher yield with or without Fe(II) present, which may give ES-1 an advantage over obligate FeOB. To investigate the Fe(II) and S oxidation pathways, we conducted transcriptomics experiments, validated with reverse transcription-quantitative PCR (RT-qPCR). We explored the long-term gene expression response at different growth phases (over days to a week) and expression changes during a short-term switch from thiosulfate to Fe(II) (90 min). The dsr and sox sulfur oxidation genes were upregulated in thiosulfate cultures. The Fe(II) oxidase gene cyc2 was among the top expressed genes during both Fe(II) and thiosulfate oxidation, and addition of Fe(II) to thiosulfate-grown cells caused an increase in cyc2 expression. These results support the role of Cyc2 as the Fe(II) oxidase and suggest that ES-1 maintains readiness to oxidize Fe(II), even in the absence ofmore »Fe(II). We used gene expression profiles to further constrain the ES-1 Fe(II) oxidation pathway. Notably, among the most highly upregulated genes during Fe(II) oxidation were genes for alternative complex III, reverse electron transport, and carbon fixation. This implies a direct connection between Fe(II) oxidation and carbon fixation, suggesting that CO 2 is an important electron sink for Fe(II) oxidation. IMPORTANCE Neutrophilic FeOB are increasingly observed in various environments, but knowledge of their ecophysiology and Fe(II) oxidation mechanisms is still relatively limited. Sideroxydans isolates are widely observed in aquifers, wetlands, and sediments, and genome analysis suggests metabolic flexibility contributes to their success. The type strain ES-1 is unusual among neutrophilic FeOB isolates, as it can grow on either Fe(II) or a non-Fe(II) substrate, thiosulfate. Almost all our knowledge of neutrophilic Fe(II) oxidation pathways comes from genome analyses, with some work on metatranscriptomes. This study used culture-based experiments to test the genes specific to Fe(II) oxidation in a facultative FeOB and refine our model of the Fe(II) oxidation pathway. We gained insight into how facultative FeOB like ES-1 connect Fe, S, and C biogeochemical cycling in the environment and suggest a multigene indicator would improve understanding of Fe(II) oxidation activity in environments with facultative FeOB.« less