skip to main content


Title: Emerging investigator series: molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles
Engineered nanomaterials interfaced with plant seeds can improve stress tolerance during the vulnerable seedling stage. Herein, we investigated how priming seeds with antioxidant poly(acrylic acid)-coated cerium oxide nanoparticles (PNC) impacts cotton ( Gossypium hirsutum L.) seedling morphological, physiological, biochemical, and transcriptomic traits under salinity stress. Seeds primed with 500 mg L −1 PNC in water (24 h) and germinated under salinity stress (200 mM NaCl) retained nanoparticles in the seed coat inner tegmen, cotyledon, and root apical meristem. Seed priming with PNC significantly ( P < 0.05) increased seedling root length (56%), fresh weight (41%), and dry weight (38%), modified root anatomical structure, and increased root vitality (114%) under salt stress compared with controls (water). PNC seed priming led to a decrease in reactive oxygen species (ROS) accumulation in seedling roots (46%) and alleviated root morphological and physiological changes induced by salinity stress. Roots from exposed seeds exhibited similar Na content, significantly decreased K (6%), greater Ca (22%) and Mg content (60%) compared to controls. A total of 4779 root transcripts were differentially expressed by PNC seed priming alone relative to controls with no nanoparticles under non-saline conditions. Under salinity stress, differentially expressed genes (DEGs) in PNC seed priming treatments relative to non-nanoparticle controls were associated with ROS pathways (13) and ion homeostasis (10), indicating that ROS and conserved Ca 2+ plant signaling pathways likely play pivotal roles in PNC-induced improvement of salinity tolerance. These results provide potential unifying molecular mechanisms of nanoparticle-seed priming enhancement of plant salinity tolerance.  more » « less
Award ID(s):
1503408
NSF-PAR ID:
10183418
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Environmental Science: Nano
ISSN:
2051-8153
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Salinity is a widespread environmental stress that severely limits crop yield worldwide. Cerium oxide nanoparticles (nanoceria) have the unique capability of catalytically reducing levels of stress-induced reactive oxygen species (ROS) including hydroxyl radicals (˙OH) that lack enzymatic scavenging pathways. The underlying mechanisms of how nanoceria ROS scavenging augments plant tolerance to environmental stress are not well understood. Herein, we demonstrate that catalytic ˙OH scavenging by nanoceria in Arabidopsis thaliana leaves significantly improves mesophyll K + retention, a key trait associated with salinity stress tolerance. Leaves with mesophyll cells interfaced with 50 mg L −1 poly(acrylic acid) coated nanoceria (PNC) have significantly higher ( P < 0.05) carbon assimilation rates (85%), quantum efficiency of photosystem II (9%), and chlorophyll content (14%) compared to controls after being exposed to 100 mM NaCl for 3 days. PNC infiltrated leaves (PNC-leaves) under salinity stress exhibit lower ROS levels – including hydroxyl radical (41%) and its precursor hydrogen peroxide (44%) – and one fold higher ( P < 0.05) cytosolic K + dye intensity in leaf mesophyll cells relative to controls. Non-invasive microelectrode ion flux electrophysiological (MIFE) measurements indicated that PNC-leaves have about three-fold lower NaCl-induced K + efflux from leaf mesophyll cells compared to controls upon exposure to salinity stress. The ROS-activated nonselective cation channels (ROS-NSCC) in the plasma membrane of leaf mesophyll cells were identified as the main ˙OH-inducible K + efflux channels. Long term catalytic scavenging of ˙OH in leaves by PNC enhances plant photosynthetic performance under salinity stress by enabling plasma membrane channels/transporters to coordinately retain higher levels of K + in the leaf mesophyll cell cytosol. PNC augmented plant ROS scavenging provides a key tool for understanding and improving plant tolerance against abiotic stresses such as salinity. 
    more » « less
  2. null (Ed.)
    Nanofertilizer application is becoming a sustainable alternative for plants micronutrients supply. Seed nutrient priming before seeding reduces non- target dispersion; although, applying nanofertilizer in correct concentration must be narrowly chosen to prevent germination and development issues. Here, we evaluated corn seedlings development and germination after seed priming with Mn3O4 nanoparticle (NP), Mn3O4 bulk and MnCl2. Sterile seeds were soaked for 8hours in priming solutions of 0, 20, 40, 80 and 160mg L1 for each Mn sources. The seeds vigor and germination were evaluated after 7 days on germination paper. Root, shoot and total lengths were measured as well as root, shoot and total dry biomass. Compared to the control, the Mn3O4 NP and Mn3O4 bulk promoted beneficial effects. Mn3O4 NP seed-priming exhibited a concentration dependent profile in improving seedling growth, with greatest benefit around 20mg L1, pro- viding higher germination, vigor, dry biomass and length than control and the other source tested. Particle size plays an important role in the reactiv- ity of Mn3O4 NP. On the other hand, seeds primed with soluble source did not differ from the control. These findings support NP-seed priming as an alternative to delivery micronutrients. 
    more » « less
  3. Introduction

    Seed vigor is largely a product of sound seed development, maturation processes, genetics, and storage conditions. It is a crucial factor impacting plant growth and crop yield and is negatively affected by unfavorable environmental conditions, which can include drought and heat as well as cold wet conditions. The latter leads to slow germination and increased seedling susceptibility to pathogens. Prior research has shown that a class of plant growth regulators called substituted tertiary amines (STAs) can enhance seed germination, seedling growth, and crop productivity. However, inconsistent benefits have limited STA adoption on a commercial scale

    Methods

    We developed a novel seed treatment protocol to evaluate the efficacy of 2-(N-methyl benzyl aminoethyl)-3-methyl butanoate (BMVE), which has shown promise as a crop seed treatment in field trials. Transcriptomic analysis of rice seedlings 24 h after BMVE treatment was done to identify the molecular basis for the improved seedling growth. The impact of BMVE on seed development was also evaluated by spraying rice panicles shortly after flower fertilization and subsequently monitoring the impact on seed traits.

    Results

    BMVE treatment of seeds 24 h after imbibition consistently improved wheat and rice seedling shoot and root growth in lab conditions. Treated wheat seedlings grown to maturity in a greenhouse also resulted in higher biomass than controls, though only under drought conditions. Treated seedlings had increased levels of transcripts involved in reactive oxygen species scavenging and auxin and gibberellic acid signaling. Conversely, several genes associated with increased reactive oxygen species/ROS load, abiotic stress responses, and germination hindering processes were reduced. BMVE spray increased both fresh and mature seed weights relative to the control for plants exposed to 96 h of heat stress. BMVE treatment during seed development also benefited germination and seedling growth in the next generation, under both ambient and heat stress conditions.

    Discussion

    The optimized experimental conditions we developed provide convincing evidence that BMVE does indeed have efficacy in plant growth enhancement. The results advance our understanding of how STAs work at the molecular level and provide insights for their practical application to improve crop growth.

     
    more » « less
  4. Shade, Ashley (Ed.)
    ABSTRACT We develop a method to artificially select for rhizosphere microbiomes that confer salt tolerance to the model grass Brachypodium distachyon grown under sodium salt stress or aluminum salt stress. In a controlled greenhouse environment, we differentially propagated rhizosphere microbiomes between plants of a nonevolving, highly inbred plant population; therefore, only microbiomes evolved in our experiment, but the plants did not evolve in parallel. To maximize microbiome perpetuation when transplanting microbiomes between plants and, thus, maximize response to microbiome selection, we improved earlier methods by (i) controlling microbiome assembly when inoculating seeds at the beginning of each selection cycle; (ii) fractionating microbiomes before transfer between plants to harvest, perpetuate, and select on only bacterial and viral microbiome components; (iii) ramping of salt stress gradually from minor to extreme salt stress with each selection cycle to minimize the chance of overstressing plants; (iv) using two nonselection control treatments (e.g., nonselection microbial enrichment and null inoculation) that permit comparison to the improving fitness benefits that selected microbiomes impart on plants. Unlike previous methods, our selection protocol generated microbiomes that enhance plant fitness after only 1 to 3 rounds of microbiome selection. After nine rounds of microbiome selection, the effect of microbiomes selected to confer tolerance to aluminum salt stress was nonspecific (these artificially selected microbiomes equally ameliorate sodium and aluminum salt stresses), but the effect of microbiomes selected to confer tolerance to sodium salt stress was specific (these artificially selected microbiomes do not confer tolerance to aluminum salt stress). Plants with artificially selected microbiomes had 55 to 205% greater seed production than plants with unselected control microbiomes. IMPORTANCE We developed an experimental protocol that improves earlier methods of artificial selection on microbiomes and then tested the efficacy of our protocol to breed root-associated bacterial microbiomes that confer salt tolerance to a plant. Salt stress limits growth and seed production of crop plants, and artificially selected microbiomes conferring salt tolerance may ultimately help improve agricultural productivity. Unlike previous experiments of microbiome selection, our selection protocol generated microbiomes that enhance plant productivity after only 1 to 3 rounds of artificial selection on root-associated microbiomes, increasing seed production under extreme salt stress by 55 to 205% after nine rounds of microbiome selection. Although we artificially selected microbiomes under controlled greenhouse conditions that differ from outdoor conditions, increasing seed production by 55 to 205% under extreme salt stress is a remarkable enhancement of plant productivity compared to traditional plant breeding. We describe a series of additional experimental protocols that will advance insights into key parameters that determine efficacy and response to microbiome selection. 
    more » « less
  5. Abstract

    Seedling emergence, survival, morphological and physiological traits, and oxidative stress resistance of southwestern white pine (Pinus strobiformisEngelm.) were studied in response to warming treatments applied during embryogenesis, germination, and early seedling growth. Daytime air temperature surrounding cones in tree canopies was warmed by +2.1°C during embryo development. Resulting seeds and seedlings were assigned to three thermal regimes in growth chambers, with each regime separated by 4°C to encompass the wide range of temperatures observed over space and time across the species’ range, plus the effect of heat waves coupled with a high carbon emissions scenario of climate warming. The embryo warming treatment reduced percent seedling emergence in all germination and growth environments and reduced mortality of seedlings grown in the warmest environment. Warm thermal regimes during early seedling growth increased subsequent seedling resistance to oxidative stress and transpirational water use. Experimental warming during seed development, germination, and seedling growth affected seedling emergence and survival. Oxidative stress resistance, morphology, and water relations were affected only by warming imposed during germination and seedling growth. This work explores potential outcomes of climate warming on multiple dimensions of seedling performance and uniquely illustrates that plant responses to heat vary with plant developmental stage in addition to the magnitude of temperature change.

     
    more » « less