skip to main content

Title: Copper oxide nanoparticle dissolution at alkaline pH is controlled by dissolved organic matter: influence of soil-derived organic matter, wheat, bacteria, and nanoparticle coating
Dissolution of CuO nanoparticles, releasing Cu ions, is a primary mechanism of Cu interaction in the rooting zone of plants. CuO dissolution is sometimes incorrectly considered negligible at high pH, since complexation of Cu with dissolved organic matter may enhance nanoparticle dissolution. Therefore data on the effects of plant-microbial-soil interactions on nanoparticle dissolution, particularly in alkaline soils, are needed. Dissolution of CuO nanoparticles (100 mg kg −1 Cu) was studied in sand supplemented with factorial combinations of wheat growth, a root-colonizing bacterium, and saturated paste extracts (SPEs) from three alkaline, calcareous soils. In control sand systems with 3.34 mM Ca(NO 3 ) 2 solution, dissolved Cu was low (266 μg L −1 Cu). Addition of dissolved organic matter via wheat root metabolites and/or soil SPEs increased dissolved Cu to 795–6250 μg L −1 Cu. Dissolution was correlated with dissolved organic carbon ( R = 0.916, p < 0.0001). Ligands >3 kDa, presumably fulvic acid from the SPEs, complexed Cu driving solubility; the addition of plant exudates further increased solubility 1.5–3.5×. The root-colonizing bacterium decreased dissolved Cu in sand pore waters from planted systems due to metabolism of root exudates. Batch solubility studies (10 mg L −1 Cu) with the soil more » SPEs and defined solutions containing bicarbonate or fulvic acid confirmed elevated CuO nanoparticle solubility at >7.5 pH. Nanoparticle dissolution was suppressed in batch experiments compared to sand, via nanoparticle organic matter coating or homoconjugation of dissolved organic matter. Alterations of CuO nanoparticles by soil organic matter, plant exudates, and bacteria will affect dissolution and bioavailability of the CuO nanoparticles in alkaline soils. « less
Authors:
; ; ; ;
Award ID(s):
1705874
Publication Date:
NSF-PAR ID:
10192132
Journal Name:
Environmental Science: Nano
ISSN:
2051-8153
Sponsoring Org:
National Science Foundation
More Like this
  1. CuO nanoparticles (NPs) are explored as fungicides and fertilizers, and are increasingly likely to be applied to agricultural soils. Consequently, interactions of CuO NPs with soil pore water (SPW) components, plants, and microbes must be understood. These experiments examined whether dissolved natural organic matter (DNOM) from SPW, or root/bacterial exudates, changed wheat ( Triticum aestivum L. v. Deloris) responses to 100 mg kg −1 (Cu/sand) as CuO NPs. Seedlings were grown in sand with 3.34 mM Ca(NO 3 ) 2 or one of three SPWs, differing in DNOM concentration and composition. At 10 days post-germination, CuO NPs stunted roots by 59% in the 3.34 mM Ca(NO 3 ) 2 and 26–35% in the three SPWs compared to plants grown without NPs. Malate, citrate, gluconate, and 2′-deoxymugineic acid (DMA), were elevated 1.3 to 5-fold in the rhizosphere with CuO NPs present. Cu was bioavailable through metallo-organic complexes, including Cu–DMA and Cu–gluconate. Fulvic acid in SPWs mitigated CuO NP-induced wheat root shortening. Pseudomonas chlororaphis O6 eliminated malate and citrate in the rhizospheres, reduced rhizosphere dissolved Cu ∼18–66%, and reduced root Cu 39% across all SPWs while enhancing root stunting ∼17% more across all SPWs than non-inoculated wheat grown with CuO NPs. Thus,more »both SPW components and root microbial colonization influenced wheat responses to CuO NPs. These interactions are likely in agricultural soils with additional processes, such as ion sorption, to influence CuO NP phytotoxicity, highlighting the importance of considering not just the target plant, but soil properties and associated microbiomes when evaluating impacts of NPs in agricultural usage.« less
  2. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (&gt; 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>
  3. Strategies to reduce crop losses due to drought are needed as climate variability affects agricultural productivity. Wheat (Triticum aestivum var. Juniper) growth in a nutrient-sufficient, solid growth matrix containing varied doses of CuO, ZnO, and SiO2 nanoparticles (NPs) was used to evaluate NP mitigation of drought stress. NP amendments were at fertilizer levels, with maxima of 30 Cu, 20 Zn, and 200 Si (mg metal/kg matrix). Seeds of this drought-tolerant cultivar were inoculated with Pseudomonas chlororaphis O6 (PcO6) to provide a protective root microbiome. An 8 day drought imposed on 14 day-old wheat seedlings decreased shoot and root mass, shoot water content, and the quantum yield of photosystem II when compared to watered plants. PcO6 root colonization was not impaired by drought or NPs. A dose-dependent increase in the Cu, Zn, and Si from the NPs was observed from analysis of the rhizosphere solution, and this process was not affected by drought. Consequently, fertilizer concentrations of the NPs did not further improve drought tolerance in wheat seedlings under the growth conditions of adequate mineral nutrition and the presence of a beneficial microbiome. These findings suggest that potential NP benefits in promoting plant drought tolerance occur only under certain environmental conditions.
  4. Although prior studies have investigated the effects of solution constituents, including dissolved organic matter and synthetic polymers, on nanoparticle mobility in porous media, far less attention has been directed toward evaluating the impacts of biosurfactants secreted by microorganisms on the transport and retention behavior of nanomaterials. The objective of this study was to explore the influence of rhamnolipid, a biosurfactant associated with biofilms, on the transport and retention of iron oxide nanoparticles (IONPs) in a water-saturated quartz sand. Column experiments were conducted using aerobic medium (ionic strength = 50.4 mM) or 10 mM NaCl as background electrolyte at a pore velocity of 0.43 m per day and pH 6.8 ± 0.2. In aerobic medium columns, nearly all introduced nanoparticles were retained when IONPs were injected alone, whereas the presence of 10 mg L −1 or 50 mg L −1 rhamnolipid resulted in ∼25% and ∼50% breakthrough of the injected IONP mass, respectively. Moreover, preflushing media with 50 mg L −1 rhamnolipid further increased IONP mass breakthrough by ∼30%. Similar enhancement of nanoparticle mobility by 50 mg L −1 rhamnolipid was also measured in lower ionic strength (10 mM NaCl) columns. Mathematical models that incorporated nanoparticle filter ripening and biosurfactant competitivemore »adsorption successfully reproduced experimental observations. Modeling results predicted an order-of-magnitude decrease in IONP filter ripening rate coefficient and a three-fold drop in average IONP retention capacity in the presence of rhamnolipid, consistent with a stabilizing effect and competition for surface sites. These findings demonstrate that rhamnolipid biosurfactant can potentially enhance nanomaterial stability and mobility in subsurface environments and that these effects should be considered when evaluating the impact of biological process on nanoparticle fate and transport in porous media.« less
  5. Coatings offer a means to control nanoparticle (NP) size, regulate dissolution, and mitigate runoff when added to crops through soil. Simultaneously, coatings can enhance particle binding to plants and provide an additional source of nutrients, making them a valuable component to existing nanoparticle delivery systems. Here, the surface functionalization of metal and metal-oxide nanoparticles to inhibit aggregation and preserve smaller agglomerate sizes for enhanced transport to the rooting zone and improved uptake in plants is reviewed. Coatings are classified by type and by their efficacy to mitigate agglomeration in soils with variable pH, ionic concentration, and natural organic matter profiles. Varying degrees of success have been reported using a range of different polymers, biomolecules, and inorganic surface coatings. Advances in zwitterionic coatings show the best results for maintaining nanoparticle stability in solutions even under high salinity and temperature conditions, whereas coating by the soil component humic acid may show additional benefits such as promoting dissolution and enhancing bioavailability in soils. Pre-tuning of NP surface properties through exposure to select natural organic matter, microbial products, and other biopolymers may yield more cost-effective nonagglomerating metal/metal-oxide NPs for soil applications in agriculture.